dc.contributor.author | Orponen, Tuomas | |
dc.date.accessioned | 2024-04-09T11:08:16Z | |
dc.date.available | 2024-04-09T11:08:16Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Orponen, T. (2024). On the Hausdorff dimension of radial slices. <i>Annales Fennici Mathematici</i>, <i>49</i>(1), 183-209. <a href="https://doi.org/10.54330/afm.143959" target="_blank">https://doi.org/10.54330/afm.143959</a> | |
dc.identifier.other | CONVID_207652219 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/94225 | |
dc.description.abstract | Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the form
Iδ(μ,ν)≲tδ⋅√It(μ)I3−t(ν),t∈(1,2), where μ is a Borel measure on R2, and ν is a Borel measure on the set of lines in R2, and Iδ(μ,ν) measures the δ-incidences between μ and the lines parametrised by ν. This inequality can be viewed as a δ−ϵ-free version of a recent incidence theorem due to Fu and Ren. The proof in this paper avoids the high-low method, and the induction-on-scales scheme responsible for the δ−ϵ-factor in Fu and Ren's work. Instead, the inequality is deduced from the classical smoothing properties of the X-ray transform. | en |
dc.description.abstract | Olkoon t∈(1,2), ja olkoon B⊂R2 Borel-joukko, jolla dimHB>t. Paperissa osoitetaan, että H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 kaikilla x∈R2∖E, missä dimHE≤2−t. Tämä on tarkka yläraja dimHE:n Hausdorff-dimensiolle. Tärkein tekninen työkalu on seuraava insidenssiepäyhtälö: Iδ(μ,ν)≲tδ⋅√It(μ)I3−t(ν),t∈(1,2), missä μ on Borel-mitta tasossa, ν on Borel-mitta tason suorien joukossa, ja luku Iδ(μ,ν) mittaa δ-insidenssejä mittojen μ ja ν painottamien pisteiden ja suorien välillä. Insidenssiepäyhtälö on tarkempi versio Fun ja Renin äskettäin todistamasta arviosta, josta on poistettu ylimääräinen δ−ϵ-tekijä. Tämän paperin todistuksessa ei käytetä "high-low"-metodia eikä induktiota skaalojen suhteen, mitkä Fun ja Renin todistuksessa aiheuttivat δ−ϵ-tekijän. Sen sijaan epäyhtälö johdetaan Röntgen-muunnoksen klassisista silotusominaisuuksista. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Suomen matemaattinen yhdistys | |
dc.relation.ispartofseries | Annales Fennici Mathematici | |
dc.rights | CC BY-NC 4.0 | |
dc.subject.other | incidences | |
dc.subject.other | radial projections | |
dc.subject.other | slicing | |
dc.subject.other | Hausdorff dimension | |
dc.title | On the Hausdorff dimension of radial slices | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202404092792 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 183-209 | |
dc.relation.issn | 2737-0690 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 49 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2024 Annales Fennici Mathematici | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 355453 | |
dc.relation.grantnumber | 101087499 | |
dc.relation.grantnumber | 101087499 | |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/101087499/EU//MUSING | |
dc.subject.yso | fraktaalit | |
dc.subject.yso | mittateoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6341 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.relation.doi | 10.54330/afm.143959 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | European Commission | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Euroopan komissio | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | ERC Consolidator Grant, HE | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | ERC Consolidator Grant, HE | fi |
jyx.fundinginformation | T.O. is supported by the Research Council of Finland via the project Approximate incidence geometry, grant no. 355453, and by the European Research Council (ERC) under the European Union’s Horizon Europe research and innovation programme (grant agreement No 101087499). | |
dc.type.okm | A1 | |