On the dimension of visible parts
Orponen, T. (2023). On the dimension of visible parts. Journal of the European Mathematical Society, 25(5), 1969-1983. https://doi.org/10.4171/JEMS/1230
Julkaistu sarjassa
Journal of the European Mathematical SocietyTekijät
Päivämäärä
2023Tekijänoikeudet
© 2022 European Mathematical Society
I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction.
Julkaisija
European Mathematical Society - EMS - Publishing House GmbHISSN Hae Julkaisufoorumista
1435-9855Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/117822708
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
T.O. is supported by the Academy of Finland via the projects Quantitative rectifiability in Euclidean and non-Euclidean spaces and Incidences on Fractals, grant Nos. 309365, 314172, 321896. T.O. is also supported by the University of Helsinki via the project Quantitative rectifiability of sets and measures in Euclidean spaces and Heisenberg groups, project No. 7516125.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the Hausdorff dimension of radial slices
Orponen, Tuomas (Suomen matemaattinen yhdistys, 2024)Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the ... -
Combinatorial proofs of two theorems of Lutz and Stull
Orponen, Tuomas (Cambridge University Press (CUP), 2021)Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One ... -
On a Continuous Sárközy-Type Problem
Kuca, Borys; Orponen, Tuomas; Sahlsten, Tuomas (Oxford University Press (OUP), 2023)We prove that there exists a constant ϵ>0ϵ>0 with the following property: if K⊂R2K⊂R2 is a compact set that contains no pair of the form {x,x+(z,z2)}{x,x+(z,z2)} for z≠0z≠0, then dimHK≤2−ϵdimHK≤2−ϵ. -
Resonance between planar self-affine measures
Pyörälä, Aleksi (Elsevier, 2024)We show that if {ϕi}i∈Γ and {ψj}j∈Λ are self-affine iterated function systems on the plane that satisfy strong separation, domination and irreducibility, then for any associated self-affine measures µ and ν, the inequality ... -
On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane
Orponen, Tuomas; Shmerkin, Pablo (Duke University Press, 2023)Let 0 s 1 and 0 t 2. An .s;t/-Furstenberg set is a set K R2 with the following property: there exists a line set L of Hausdorff dimension dimH L t such that dimH.K \ `/ s for all ` 2 L. We prove that for s 2 .0;1/ and ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.