On a Continuous Sárközy-Type Problem
Kuca, B., Orponen, T., & Sahlsten, T. (2023). On a Continuous Sárközy-Type Problem. International Mathematics Research Notices, 2023(13), 11291-11315. https://doi.org/10.1093/imrn/rnac168
Julkaistu sarjassa
International Mathematics Research NoticesPäivämäärä
2023Tekijänoikeudet
© The Author(s) 2022. Published by Oxford University Press. All rights reserved.
We prove that there exists a constant ϵ>0ϵ>0 with the following property: if K⊂R2K⊂R2 is a compact set that contains no pair of the form {x,x+(z,z2)}{x,x+(z,z2)} for z≠0z≠0, then dimHK≤2−ϵdimHK≤2−ϵ.
Julkaisija
Oxford University Press (OUP)ISSN Hae Julkaisufoorumista
1073-7928Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/147103381
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
This work was supported by the Academy of Finland via the projects Quantitative Rectifiability in Euclidean and Non-Euclidean Spaces and Incidences on Fractals [309365, 314172, and 321896 [to B.K. and T.O.]; and by a start-up grant from the University of Manchester [to T.S.].Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Polynomial and horizontally polynomial functions on Lie groups
Antonelli, Gioacchino; Le Donne, Enrico (Springer, 2022)We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset S of the algebra g of left-invariant vector fields on a Lie group G and we ... -
On the dimension of visible parts
Orponen, Tuomas (European Mathematical Society - EMS - Publishing House GmbH, 2023)I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction. -
On the Hausdorff dimension of radial slices
Orponen, Tuomas (Suomen matemaattinen yhdistys, 2024)Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the ... -
Weakly porous sets and Muckenhoupt Ap distance functions
Anderson, Theresa C.; Lehrbäck, Juha; Mudarra, Carlos; Vähäkangas, Antti V. (Elsevier, 2024)We examine the class of weakly porous sets in Euclidean spaces. As our first main result we show that the distance weight w(x)=dist(x,E)−α belongs to the Muckenhoupt class A1, for some α>0, if and only if E⊂Rn is weakly ... -
Resonance between planar self-affine measures
Pyörälä, Aleksi (Elsevier, 2024)We show that if {ϕi}i∈Γ and {ψj}j∈Λ are self-affine iterated function systems on the plane that satisfy strong separation, domination and irreducibility, then for any associated self-affine measures µ and ν, the inequality ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.