On the Hausdorff dimension of radial slices
Orponen, T. (2024). On the Hausdorff dimension of radial slices. Annales Fennici Mathematici, 49(1), 183-209. https://doi.org/10.54330/afm.143959
Julkaistu sarjassa
Annales Fennici MathematiciTekijät
Päivämäärä
2024Tekijänoikeudet
© 2024 Annales Fennici Mathematici
Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the form
Iδ(μ,ν)≲tδ⋅√It(μ)I3−t(ν),t∈(1,2), where μ is a Borel measure on R2, and ν is a Borel measure on the set of lines in R2, and Iδ(μ,ν) measures the δ-incidences between μ and the lines parametrised by ν. This inequality can be viewed as a δ−ϵ-free version of a recent incidence theorem due to Fu and Ren. The proof in this paper avoids the high-low method, and the induction-on-scales scheme responsible for the δ−ϵ-factor in Fu and Ren's work. Instead, the inequality is deduced from the classical smoothing properties of the X-ray transform. Olkoon t∈(1,2), ja olkoon B⊂R2 Borel-joukko, jolla dimHB>t. Paperissa osoitetaan, että H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 kaikilla x∈R2∖E, missä dimHE≤2−t. Tämä on tarkka yläraja dimHE:n Hausdorff-dimensiolle. Tärkein tekninen työkalu on seuraava insidenssiepäyhtälö: Iδ(μ,ν)≲tδ⋅√It(μ)I3−t(ν),t∈(1,2), missä μ on Borel-mitta tasossa, ν on Borel-mitta tason suorien joukossa, ja luku Iδ(μ,ν) mittaa δ-insidenssejä mittojen μ ja ν painottamien pisteiden ja suorien välillä. Insidenssiepäyhtälö on tarkempi versio Fun ja Renin äskettäin todistamasta arviosta, josta on poistettu ylimääräinen δ−ϵ-tekijä. Tämän paperin todistuksessa ei käytetä "high-low"-metodia eikä induktiota skaalojen suhteen, mitkä Fun ja Renin todistuksessa aiheuttivat δ−ϵ-tekijän. Sen sijaan epäyhtälö johdetaan Röntgen-muunnoksen klassisista silotusominaisuuksista.
Julkaisija
Suomen matemaattinen yhdistysISSN Hae Julkaisufoorumista
2737-0690Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207652219
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
T.O. is supported by the Research Council of Finland via the project Approximate incidence geometry, grant no. 355453, and by the European Research Council (ERC) under the European Union’s Horizon Europe research and innovation programme (grant agreement No 101087499).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the dimension of visible parts
Orponen, Tuomas (European Mathematical Society - EMS - Publishing House GmbH, 2023)I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction. -
On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane
Orponen, Tuomas; Shmerkin, Pablo (Duke University Press, 2023)Let 0 s 1 and 0 t 2. An .s;t/-Furstenberg set is a set K R2 with the following property: there exists a line set L of Hausdorff dimension dimH L t such that dimH.K \ `/ s for all ` 2 L. We prove that for s 2 .0;1/ and ... -
Dimension of projection : Marstrand's theorem
Pesonen, Sofia (2022)Tässä tutkielmassa todistetaan Marstrandin projektiolause käyttäen apuna potentiaaliteoriaa. Projektiolauseen mukaan 2-ulotteisen Borel joukon ortogonaaliprojektion Hausdorffin dimensio on luvun 1 ja kyseisen Borel joukon ... -
Combinatorial proofs of two theorems of Lutz and Stull
Orponen, Tuomas (Cambridge University Press (CUP), 2021)Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One ... -
On a Continuous Sárközy-Type Problem
Kuca, Borys; Orponen, Tuomas; Sahlsten, Tuomas (Oxford University Press (OUP), 2023)We prove that there exists a constant ϵ>0ϵ>0 with the following property: if K⊂R2K⊂R2 is a compact set that contains no pair of the form {x,x+(z,z2)}{x,x+(z,z2)} for z≠0z≠0, then dimHK≤2−ϵdimHK≤2−ϵ.
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.