On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane
Orponen, T., & Shmerkin, P. (2023). On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane. Duke Mathematical Journal, 172(18), 3559-3632. https://doi.org/10.1215/00127094-2022-0103
Julkaistu sarjassa
Duke Mathematical JournalPäivämäärä
2023Tekijänoikeudet
© 2023 Duke University Press
Let 0 s 1 and 0 t 2. An .s;t/-Furstenberg set is a set K R2 with the following property: there exists a line set L of Hausdorff dimension dimH L t such that dimH.K \ `/ s for all ` 2 L. We prove that for s 2 .0;1/ and t 2 .s;2, the Hausdorff dimension of .s;t/-Furstenberg sets in R2 is no smaller than 2s C , where >0 depends only on s and t. For s > 1=2 and t D 1, this is an -improvement over a result of Wolff from 1999. The same method also yields an -improvement to Kaufman’s projection theorem from 1968. We show that if s 2 .0;1/, t 2 .s;2, and K R2 is an analytic set with dimH K D t, then dimH ® e 2 S1 W dimH e.K/ s ¯ s ; where >0 depends only on s and t. Here e is the orthogonal projection to the line in direction e.
Julkaisija
Duke University PressISSN Hae Julkaisufoorumista
0012-7094Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207392649
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Orponen’s work was partially supported by Academy of Finland grants 309365, 314172, and 321896 via the projects “Quantitative rectifiability in Euclidean and nonEuclidean spaces” and “Incidences on fractals.” Shmerkin’s work was partially supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the upper Minkowski dimension, the packing dimension, and orthogonal projections
Järvenpää, Maarit (1994) -
On the dimension of visible parts
Orponen, Tuomas (European Mathematical Society - EMS - Publishing House GmbH, 2023)I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction. -
On the Hausdorff dimension of radial slices
Orponen, Tuomas (Suomen matemaattinen yhdistys, 2024)Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the ... -
Dimension estimates for the boundary of planar Sobolev extension domains
Lučić, Danka; Rajala, Tapio; Takanen, Jyrki (Walter de Gruyter GmbH, 2023)We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev W1,pW1,p -extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is ... -
Vertical projections in the Heisenberg group via cinematic functions and point-plate incidences
Fässler, Katrin; Orponen, Tuomas (Elsevier, 2023)Let {πe : H → We : e ∈ S1} be the family of vertical projections in the first Heisenberg group H. We prove that if K ⊂ H is a Borel set with Hausdorff dimension dimH K ∈ [0, 2] ∪ {3}, then dimH πe(K) ≥ dimH K for H1 almost ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.