Näytä suppeat kuvailutiedot

dc.contributor.authorOrponen, Tuomas
dc.date.accessioned2024-04-09T11:08:16Z
dc.date.available2024-04-09T11:08:16Z
dc.date.issued2024
dc.identifier.citationOrponen, T. (2024). On the Hausdorff dimension of radial slices. <i>Annales Fennici Mathematici</i>, <i>49</i>(1), 183-209. <a href="https://doi.org/10.54330/afm.143959" target="_blank">https://doi.org/10.54330/afm.143959</a>
dc.identifier.otherCONVID_207652219
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94225
dc.description.abstractLet t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the form Iδ(μ,ν)≲tδ⋅√It(μ)I3−t(ν),t∈(1,2), where μ is a Borel measure on R2, and ν is a Borel measure on the set of lines in R2, and Iδ(μ,ν) measures the δ-incidences between μ and the lines parametrised by ν. This inequality can be viewed as a δ−ϵ-free version of a recent incidence theorem due to Fu and Ren. The proof in this paper avoids the high-low method, and the induction-on-scales scheme responsible for the δ−ϵ-factor in Fu and Ren's work. Instead, the inequality is deduced from the classical smoothing properties of the X-ray transform.en
dc.description.abstractOlkoon t∈(1,2), ja olkoon B⊂R2 Borel-joukko, jolla dimHB>t. Paperissa osoitetaan, että H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 kaikilla x∈R2∖E, missä dimHE≤2−t. Tämä on tarkka yläraja dimHE:n Hausdorff-dimensiolle. Tärkein tekninen työkalu on seuraava insidenssiepäyhtälö: Iδ(μ,ν)≲tδ⋅√It(μ)I3−t(ν),t∈(1,2), missä μ on Borel-mitta tasossa, ν on Borel-mitta tason suorien joukossa, ja luku Iδ(μ,ν) mittaa δ-insidenssejä mittojen μ ja ν painottamien pisteiden ja suorien välillä. Insidenssiepäyhtälö on tarkempi versio Fun ja Renin äskettäin todistamasta arviosta, josta on poistettu ylimääräinen δ−ϵ-tekijä. Tämän paperin todistuksessa ei käytetä "high-low"-metodia eikä induktiota skaalojen suhteen, mitkä Fun ja Renin todistuksessa aiheuttivat δ−ϵ-tekijän. Sen sijaan epäyhtälö johdetaan Röntgen-muunnoksen klassisista silotusominaisuuksista.fi
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSuomen matemaattinen yhdistys
dc.relation.ispartofseriesAnnales Fennici Mathematici
dc.rightsCC BY-NC 4.0
dc.subject.otherincidences
dc.subject.otherradial projections
dc.subject.otherslicing
dc.subject.otherHausdorff dimension
dc.titleOn the Hausdorff dimension of radial slices
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202404092792
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange183-209
dc.relation.issn2737-0690
dc.relation.numberinseries1
dc.relation.volume49
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 Annales Fennici Mathematici
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber355453
dc.relation.grantnumber101087499
dc.relation.grantnumber101087499
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/101087499/EU//MUSING
dc.subject.ysofraktaalit
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6341
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttps://creativecommons.org/licenses/by-nc/4.0/
dc.relation.doi10.54330/afm.143959
dc.relation.funderResearch Council of Finlanden
dc.relation.funderEuropean Commissionen
dc.relation.funderSuomen Akatemiafi
dc.relation.funderEuroopan komissiofi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramERC Consolidator Grant, HEen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramERC Consolidator Grant, HEfi
jyx.fundinginformationT.O. is supported by the Research Council of Finland via the project Approximate incidence geometry, grant no. 355453, and by the European Research Council (ERC) under the European Union’s Horizon Europe research and innovation programme (grant agreement No 101087499).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC 4.0