Resonance between planar self-affine measures
Pyörälä, A. (2024). Resonance between planar self-affine measures. Advances in Mathematics, 451, Article 109770. https://doi.org/10.1016/j.aim.2024.109770
Julkaistu sarjassa
Advances in MathematicsTekijät
Päivämäärä
2024Tekijänoikeudet
© 2024 the Authors
We show that if {ϕi}i∈Γ and {ψj}j∈Λ are self-affine iterated function systems on the plane that satisfy strong separation, domination and irreducibility, then for any associated self-affine measures µ and ν, the inequality
dimH(µ ∗ ν) < min{2, dimH µ + dimH ν}
implies that there is algebraic resonance between the eigenvalues of the linear parts of ϕi and ψj . This extends to planar non-conformal setting the existing analogous results for self-conformal measures on the line.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0001-8708Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/220778088
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SALisätietoja rahoituksesta
The research of this project was conducted as part of the author's doctoral studies at University of Oulu, and has been partly supported by the Research Council of Finland via the project GeoQuantAM: Geometric and Quantitative Analysis on Metric spaces, grant no. 354241.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Dimension estimates for the boundary of planar Sobolev extension domains
Lučić, Danka; Rajala, Tapio; Takanen, Jyrki (Walter de Gruyter GmbH, 2023)We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev W1,pW1,p -extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is ... -
On the dimension of visible parts
Orponen, Tuomas (European Mathematical Society - EMS - Publishing House GmbH, 2023)I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction. -
On the Hausdorff dimension of radial slices
Orponen, Tuomas (Suomen matemaattinen yhdistys, 2024)Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the ... -
Hidden Strange Nonchaotic Attractors
Danca, Marius-F.; Kuznetsov, Nikolay (MDPI AG, 2021)In this paper, it is found numerically that the previously found hidden chaotic attractors of the Rabinovich–Fabrikant system actually present the characteristics of strange nonchaotic attractors. For a range of the ... -
Combinatorial proofs of two theorems of Lutz and Stull
Orponen, Tuomas (Cambridge University Press (CUP), 2021)Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.