dc.contributor.author | Kuca, Borys | |
dc.contributor.author | Orponen, Tuomas | |
dc.contributor.author | Sahlsten, Tuomas | |
dc.date.accessioned | 2022-11-16T12:28:37Z | |
dc.date.available | 2022-11-16T12:28:37Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Kuca, B., Orponen, T., & Sahlsten, T. (2023). On a Continuous Sárközy-Type Problem. <i>International Mathematics Research Notices</i>, <i>2023</i>(13), 11291-11315. <a href="https://doi.org/10.1093/imrn/rnac168" target="_blank">https://doi.org/10.1093/imrn/rnac168</a> | |
dc.identifier.other | CONVID_147103381 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/83949 | |
dc.description.abstract | We prove that there exists a constant ϵ>0ϵ>0 with the following property: if K⊂R2K⊂R2 is a compact set that contains no pair of the form {x,x+(z,z2)}{x,x+(z,z2)} for z≠0z≠0, then dimHK≤2−ϵdimHK≤2−ϵ. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Oxford University Press (OUP) | |
dc.relation.ispartofseries | International Mathematics Research Notices | |
dc.rights | In Copyright | |
dc.subject.other | fractals | |
dc.subject.other | polynomial configurations | |
dc.subject.other | Hausdorff dimension | |
dc.subject.other | Fourier transforms of measures | |
dc.subject.other | Szemerédi’s theorem | |
dc.subject.other | minimeasures | |
dc.subject.other | finite fields | |
dc.title | On a Continuous Sárközy-Type Problem | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202211165243 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 11291-11315 | |
dc.relation.issn | 1073-7928 | |
dc.relation.numberinseries | 13 | |
dc.relation.volume | 2023 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © The Author(s) 2022. Published by Oxford University Press. All rights reserved. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | polynomit | |
dc.subject.yso | harmoninen analyysi | |
dc.subject.yso | fraktaalit | |
dc.subject.yso | mittateoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17241 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p28124 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6341 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1093/imrn/rnac168 | |
jyx.fundinginformation | This work was supported by the Academy of Finland via the projects Quantitative Rectifiability in Euclidean and Non-Euclidean Spaces and Incidences on Fractals [309365, 314172, and 321896 [to B.K. and T.O.]; and by a start-up grant from the University of Manchester [to T.S.]. | |
dc.type.okm | A1 | |