Show simple item record

dc.contributor.authorKuca, Borys
dc.contributor.authorOrponen, Tuomas
dc.contributor.authorSahlsten, Tuomas
dc.date.accessioned2022-11-16T12:28:37Z
dc.date.available2022-11-16T12:28:37Z
dc.date.issued2023
dc.identifier.citationKuca, B., Orponen, T., & Sahlsten, T. (2023). On a Continuous Sárközy-Type Problem. <i>International Mathematics Research Notices</i>, <i>2023</i>(13), 11291-11315. <a href="https://doi.org/10.1093/imrn/rnac168" target="_blank">https://doi.org/10.1093/imrn/rnac168</a>
dc.identifier.otherCONVID_147103381
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83949
dc.description.abstractWe prove that there exists a constant ϵ>0ϵ>0 with the following property: if K⊂R2K⊂R2 is a compact set that contains no pair of the form {x,x+(z,z2)}{x,x+(z,z2)} for z≠0z≠0⁠, then dimHK≤2−ϵdimH⁡K≤2−ϵ⁠.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherOxford University Press (OUP)
dc.relation.ispartofseriesInternational Mathematics Research Notices
dc.rightsIn Copyright
dc.subject.otherfractals
dc.subject.otherpolynomial configurations
dc.subject.otherHausdorff dimension
dc.subject.otherFourier transforms of measures
dc.subject.otherSzemerédi’s theorem
dc.subject.otherminimeasures
dc.subject.otherfinite fields
dc.titleOn a Continuous Sárközy-Type Problem
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202211165243
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange11291-11315
dc.relation.issn1073-7928
dc.relation.numberinseries13
dc.relation.volume2023
dc.type.versionacceptedVersion
dc.rights.copyright© The Author(s) 2022. Published by Oxford University Press. All rights reserved.
dc.rights.accesslevelopenAccessfi
dc.subject.ysopolynomit
dc.subject.ysoharmoninen analyysi
dc.subject.ysofraktaalit
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p17241
jyx.subject.urihttp://www.yso.fi/onto/yso/p28124
jyx.subject.urihttp://www.yso.fi/onto/yso/p6341
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1093/imrn/rnac168
jyx.fundinginformationThis work was supported by the Academy of Finland via the projects Quantitative Rectifiability in Euclidean and Non-Euclidean Spaces and Incidences on Fractals [309365, 314172, and 321896 [to B.K. and T.O.]; and by a start-up grant from the University of Manchester [to T.S.].
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright