Weakly porous sets and Muckenhoupt Ap distance functions
Anderson, T. C., Lehrbäck, J., Mudarra, C., & Vähäkangas, A. V. (2024). Weakly porous sets and Muckenhoupt Ap distance functions. Journal of Functional Analysis, 287(8), Article 110558. https://doi.org/10.1016/j.jfa.2024.110558
Julkaistu sarjassa
Journal of Functional AnalysisPäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
We examine the class of weakly porous sets in Euclidean spaces. As our first main result we show that the distance weight w(x)=dist(x,E)−α belongs to the Muckenhoupt class A1, for some α>0, if and only if E⊂Rn is weakly porous. We also give a precise quantitative version of this characterization in terms of the so-called Muckenhoupt exponent of E. When E is weakly porous, we obtain a similar quantitative characterization of w∈Ap, for 1 < p < ∞, as well. At the end of the paper, we give an example of a set E⊂R which is not weakly porous but for which w∈Ap∖A1 for every 0<α<1 and 1 < p < ∞.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-1236Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/233283945
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
T.C.A. was supported in part by an NSF graduate research fellowship, NSF DMS-2231990 and NSP DMS-1954407. She thanks Tuomas Hytönen for an invitation to visit the University of Helsinki where this project originated. C.M. was supported by the Academy of Finland via the projects Geometric Aspects of Sobolev Space Theory (grant No. 314789) and Incidences on Fractals (grant No. 321896).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On a Continuous Sárközy-Type Problem
Kuca, Borys; Orponen, Tuomas; Sahlsten, Tuomas (Oxford University Press (OUP), 2023)We prove that there exists a constant ϵ>0ϵ>0 with the following property: if K⊂R2K⊂R2 is a compact set that contains no pair of the form {x,x+(z,z2)}{x,x+(z,z2)} for z≠0z≠0, then dimHK≤2−ϵdimHK≤2−ϵ. -
Uniform rectifiability and ε-approximability of harmonic functions in Lp
Hofmann, Steve; Tapiola, Olli (Centre Mersenne; l'Institut Fourier,, 2020)Suppose that E⊂Rn+1 is a uniformly rectifiable set of codimension 1. We show that every harmonic function is ε-approximable in Lp(Ω) for every p∈(1,∞), where Ω:=Rn+1∖E. Together with results of many authors this shows that ... -
ε-approximability of harmonic functions in Lp implies uniform rectifiability
Bortz, Simon; Tapiola, Olli (American Mathematical Society, 2019) -
Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy-Sobolev -type Inequalities
Dyda, Bartłomiej; Ihnatsyeva, Lizaveta; Lehrbäck, Juha; Tuominen, Heli; Vähäkangas, Antti (Springer, 2019) -
On Limits at Infinity of Weighted Sobolev Functions
Eriksson-Bique, Sylvester; Koskela, Pekka; Nguyen, Khanh (Elsevier, 2022)We study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.