Polynomial and horizontally polynomial functions on Lie groups
Antonelli, G., & Le Donne, E. (2022). Polynomial and horizontally polynomial functions on Lie groups. Annali di Matematica Pura ed Applicata, 201(5), 2063-2100. https://doi.org/10.1007/s10231-022-01192-z
Julkaistu sarjassa
Annali di Matematica Pura ed ApplicataPäivämäärä
2022Oppiaine
Geometrinen analyysi ja matemaattinen fysiikkaMatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköGeometric Analysis and Mathematical PhysicsMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© The Author(s) 2022
We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset S of the algebra g of left-invariant vector fields on a Lie group G and we assume that S Lie generates g. We say that a function f:G→R (or more generally a distribution on G) is S-polynomial if for all X∈S there exists k∈N such that the iterated derivative Xkf is zero in the sense of distributions. First, we show that all S-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent k in the previous definition is independent on X∈S, they form a finite-dimensional vector space. Second, if G is connected and nilpotent, we show that S-polynomial functions are polynomial functions in the sense of Leibman. The same result may not be true for non-nilpotent groups. Finally, we show that in connected nilpotent Lie groups, being polynomial in the sense of Leibman, being a polynomial in exponential chart, and the vanishing of mixed derivatives of some fixed degree along directions of g are equivalent notions.
...
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0373-3114Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104476894
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Akatemiatutkija, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
G.A. was partially supported by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). E.L.D. was partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’) ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Cornucopia of Carnot Groups in Low Dimensions
Le Donne, Enrico; Tripaldi, Francesca (Walter de Gruyter GmbH, 2022)Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path ... -
On a Continuous Sárközy-Type Problem
Kuca, Borys; Orponen, Tuomas; Sahlsten, Tuomas (Oxford University Press (OUP), 2023)We prove that there exists a constant ϵ>0ϵ>0 with the following property: if K⊂R2K⊂R2 is a compact set that contains no pair of the form {x,x+(z,z2)}{x,x+(z,z2)} for z≠0z≠0, then dimHK≤2−ϵdimHK≤2−ϵ. -
Horizontally Affine Functions on Step-2 Carnot Algebras
Le Donne, Enrico; Morbidelli, Daniele; Rigot, Séverine (Springer, 2023)In this paper, we introduce the notion of horizontally affine, h-affine in short, function and give a complete description of such functions on step-2 Carnot algebras. We show that the vector space of h-affine functions ... -
Gradient estimates for heat kernels and harmonic functions
Coulhon, Thierry; Jiang, Renjin; Koskela, Pekka; Sikora, Adam (Elsevier, 2020)Let (X,d,μ) be a doubling metric measure space endowed with a Dirichlet form E deriving from a “carré du champ”. Assume that (X,d,μ,E) supports a scale-invariant L2-Poincaré inequality. In this article, we study the following ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.