Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation
Lassas, M., Liimatainen, T., Potenciano-Machado, L., & Tyni, T. (2022). Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation. Journal of Differential Equations, 337, 395-435. https://doi.org/10.1016/j.jde.2022.08.010
Published in
Journal of Differential EquationsDate
2022Discipline
Inversio-ongelmien huippuyksikköMatematiikkaCentre of Excellence in Inverse ProblemsMathematicsCopyright
© 2022 The Author(s). Published by Elsevier Inc.
We consider the recovery of a potential associated with a semi-linear wave equation on Rn+1, n≥1. We show that an unknown potential a(x,t) of the wave equation □u+aum=0 can be recovered in a Hölder stable way from the map u|∂Ω×[0,T]↦〈ψ,∂νu|∂Ω×[0,T]〉L2(∂Ω×[0,T]). This data is equivalent to the inner product of the Dirichlet-to-Neumann map with a measurement function ψ. We also prove similar stability result for the recovery of a when there is noise added to the boundary data. The method we use is constructive and it is based on the higher order linearization. As a consequence, we also get a uniqueness result. We also give a detailed presentation of the forward problem for the equation □u+aum=0.
Publisher
ElsevierISSN Search the Publication Forum
0022-0396Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/152122181
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Increasing stability in the linearized inverse Schrödinger potential problem with power type nonlinearities
Lu, Shuai; Salo, Mikko; Xu, Boxi (IOP Publishing, 2022)We consider increasing stability in the inverse Schrödinger potential problem with power type nonlinearities at a large wavenumber. Two linearization approaches, with respect to small boundary data and small potential ... -
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ... -
The Linearized Calderón Problem on Complex Manifolds
Guillarmou, Colin; Salo, Mikko; Tzou, Leo (Springer, 2019)In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to ... -
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
Optimality of Increasing Stability for an Inverse Boundary Value Problem
Kow, Pu-Zhao; Uhlmann, Gunther; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2021)In this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger ...