dc.contributor.author | Lassas, Matti | |
dc.contributor.author | Liimatainen, Tony | |
dc.contributor.author | Potenciano-Machado, Leyter | |
dc.contributor.author | Tyni, Teemu | |
dc.date.accessioned | 2022-09-01T11:36:42Z | |
dc.date.available | 2022-09-01T11:36:42Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Lassas, M., Liimatainen, T., Potenciano-Machado, L., & Tyni, T. (2022). Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation. <i>Journal of Differential Equations</i>, <i>337</i>, 395-435. <a href="https://doi.org/10.1016/j.jde.2022.08.010" target="_blank">https://doi.org/10.1016/j.jde.2022.08.010</a> | |
dc.identifier.other | CONVID_152122181 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82906 | |
dc.description.abstract | We consider the recovery of a potential associated with a semi-linear wave equation on Rn+1, n≥1. We show that an unknown potential a(x,t) of the wave equation □u+aum=0 can be recovered in a Hölder stable way from the map u|∂Ω×[0,T]↦〈ψ,∂νu|∂Ω×[0,T]〉L2(∂Ω×[0,T]). This data is equivalent to the inner product of the Dirichlet-to-Neumann map with a measurement function ψ. We also prove similar stability result for the recovery of a when there is noise added to the boundary data. The method we use is constructive and it is based on the higher order linearization. As a consequence, we also get a uniqueness result. We also give a detailed presentation of the forward problem for the equation □u+aum=0. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Journal of Differential Equations | |
dc.rights | CC BY 4.0 | |
dc.title | Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202209014440 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Inversio-ongelmien huippuyksikkö | fi |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Centre of Excellence in Inverse Problems | en |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 395-435 | |
dc.relation.issn | 0022-0396 | |
dc.relation.volume | 337 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Author(s). Published by Elsevier Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | inversio-ongelmat | |
dc.subject.yso | osittaisdifferentiaaliyhtälöt | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27912 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p12392 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.jde.2022.08.010 | |
dc.type.okm | A1 | |