The Linearized Calderón Problem on Complex Manifolds
Guillarmou, C., Salo, M., & Tzou, L. (2019). The Linearized Calderón Problem on Complex Manifolds. Acta Mathematica Sinica, 35(6), 1043-1056. https://doi.org/10.1007/s10114-019-8129-7
Julkaistu sarjassa
Acta Mathematica SinicaPäivämäärä
2019Tekijänoikeudet
© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2019.
In this note we show that on any compact subdomain of a K¨ahler manifold that admits sufficiently many global holomorphic functions, the products of harmonic functions form a complete set. This gives a positive answer to the linearized anisotropic Calder´on problem on a class of complex manifolds that includes compact subdomains of Stein manifolds and sufficiently small subdomains of K¨ahler manifolds. Some of these manifolds do not admit limiting Carleman weights, and thus cannot be treated by standard methods for the Calder´on problem in higher dimensions. The argument is based on constructing Morse holomorphic functions with approximately prescribed critical points. This extends earlier results from the case of Riemann surfaces to higher dimensional complex manifolds.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
1439-8516Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/30726449
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Akatemiahanke, SA; Huippuyksikkörahoitus, SA; EU:n 7. puiteohjelma (FP7); ERC Consolidator Grant
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
The first author is partially supported by ERC Consolidator Grant IPFLOW (Grant No. 725967), the second author was supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Problems Research (Grant Nos. 284715 and 309963)) and by the European Research Council under FP7/2007–2013 ERC StG (Grant No. 307023) and Horizon 2020 ERC CoG (Grant No. 770924), and the third author is partially supported by Australian Research Council (Grant Nos. DP190103302 and DP190103451) ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds
Krupchyk, Katya; Liimatainen, Tony; Salo, Mikko (Elsevier Inc., 2022)In this article we study the linearized anisotropic Calderón problem on a compact Riemannian manifold with boundary. This problem amounts to showing that products of pairs of harmonic functions of the manifold form a ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Inverse problems for elliptic equations with power type nonlinearities
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (Elsevier, 2021)We introduce a method for solving Calderón type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for ... -
Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (European Mathematical Society Publishing House, 2021)We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo ... -
Refined instability estimates for some inverse problems
Kow, Pu-Zhao; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)Many inverse problems are known to be ill-posed. The ill-posedness can be manifested by an instability estimate of exponential type, first derived by Mandache [29]. In this work, based on Mandache's idea, we refine the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.