Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations
Lassas, M., Liimatainen, T., Lin, Y.-H., & Salo, M. (2021). Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations. Revista Matematica Iberoamericana, 37(4), 1553-1580. https://doi.org/10.4171/rmi/1242
Published in
Revista Matematica IberoamericanaDate
2021Copyright
© 2021 EMS Press
We study various partial data inverse boundary value problems for the semilinear elliptic equation Δu + a(x, u) = 0 in a domain in Rn by using the higher order linearization technique introduced by Lassas– Liimatainen–Lin–Salo and Feizmohammadi–Oksanen. We show that the Dirichlet-to-Neumann map of the above equation determines the Taylor series of a(x, z) at z = 0 under general assumptions on a(x, z). The determination of the Taylor series can be done in parallel with the detection of an unknown cavity inside the domain or an unknown part of the boundary of the domain. The method relies on the solution of the linearized partial data Calder´on problem by Ferreira–Kenig–Sj¨ostrand–Uhlmann, and implies the solution of partial data problems for certain semilinear equations Δu + a(x, u) = 0 also proved by Krupchyk–Uhlmann. The results that we prove are in contrast to the analogous inverse problems for the linear Schr¨odinger equation. There recovering an unknown cavity (or part of the boundary) and the potential simultaneously are longstanding open problems, and the solution to the Calder´on problem with partial data is known only in special cases when n ≥ 3.
...


Publisher
European Mathematical Society Publishing HouseISSN Search the Publication Forum
0213-2230Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/47358593
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Inverse problems for elliptic equations with fractional power type nonlinearities
Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko; Tyni, Teemu (Elsevier, 2022)We study inverse problems for semilinear elliptic equations with fractional power type nonlinearities. Our arguments are based on the higher order linearization method, which helps us to solve inverse problems for certain ... -
Inverse problems for elliptic equations with power type nonlinearities
Lassas, Matti; Liimatainen, Tony; Lin, Yi-Hsuan; Salo, Mikko (Elsevier, 2021)We introduce a method for solving Calderón type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for ... -
On some partial data Calderón type problems with mixed boundary conditions
Covi, Giovanni; Rüland, Angkana (Elsevier, 2021)In this article we consider the simultaneous recovery of bulk and boundary potentials in (degenerate) elliptic equations modelling (degenerate) conducting media with inaccessible boundaries. This connects local and nonlocal ... -
Determining an unbounded potential for an elliptic equation with a power type nonlinearity
Nurminen, Janne (Elsevier, 2023)In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential q in ��/2+�, �>0, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results ... -
On the scientific work of Victor Isakov
Krupchyk, Katya; Salo, Mikko; Uhlmann, Gunther; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)