Show simple item record

dc.contributor.authorCao, LiAo
dc.contributor.authorMattelaer, Felix
dc.contributor.authorSajavaara, Timo
dc.contributor.authorDendooven, Jolien
dc.contributor.authorDetavernier, Christophe
dc.date.accessioned2020-02-25T08:22:22Z
dc.date.available2020-02-25T08:22:22Z
dc.date.issued2020
dc.identifier.citationCao, L., Mattelaer, F., Sajavaara, T., Dendooven, J., & Detavernier, C. (2020). A liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films. <i>Journal of Vacuum Science and Technology A</i>, <i>38</i>(2), Article 022417. <a href="https://doi.org/10.1116/1.5139631" target="_blank">https://doi.org/10.1116/1.5139631</a>
dc.identifier.otherCONVID_34696254
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/67941
dc.description.abstractFor large-scale atomic layer deposition (ALD) of alumina, the most commonly used alkyl precursor trimethylaluminum poses safety issues due to its pyrophoric nature. In this work, the authors have investigated a liquid alkoxide, aluminum tri-sec-butoxide (ATSB), as a precursor for ALD deposition of alumina. ATSB is thermally stable and the liquid nature facilitates handling in a bubbler and potentially enables liquid injection toward upscaling. Both thermal and plasma enhanced ALD processes are investigated in a vacuum type reactor by using water, oxygen plasma, and water plasma as coreactants. All processes achieved ALD deposition at a growth rate of 1–1.4 Å/cycle for substrate temperatures ranging from 100 to 200 °C. Film morphology, surface roughness, and composition have been studied with different characterization techniques.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherAmerican Institute of Physics
dc.relation.ispartofseriesJournal of Vacuum Science and Technology A
dc.rightsIn Copyright
dc.subject.otherplasma processing
dc.subject.otheratomic layer deposition
dc.titleA liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202002252169
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineFysiikkafi
dc.contributor.oppiaineKiihdytinlaboratoriofi
dc.contributor.oppiainePhysicsen
dc.contributor.oppiaineAccelerator Laboratoryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0734-2101
dc.relation.numberinseries2
dc.relation.volume38
dc.type.versionpublishedVersion
dc.rights.copyright© 2020 Author(s)
dc.rights.accesslevelopenAccessfi
dc.subject.ysoatomikerroskasvatus
dc.subject.ysoohutkalvot
dc.subject.ysoalumiini
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p27468
jyx.subject.urihttp://www.yso.fi/onto/yso/p16644
jyx.subject.urihttp://www.yso.fi/onto/yso/p19563
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1116/1.5139631
jyx.fundinginformationThis work was supported by the M-ERA CALDERA project and the Fund for Scientific Research Flanders (FWO). Jolien Dendooven acknowledges the FWO for a postdoctoral fellowship.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright