dc.contributor.author | Orponen, Tuomas | |
dc.date.accessioned | 2024-06-20T08:42:25Z | |
dc.date.available | 2024-06-20T08:42:25Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Orponen, T. (2024). On the discretised ABC sum-product problem. <i>Transactions of the American Mathematical Society</i>, <i>Early online</i>. <a href="https://doi.org/10.1090/tran/9094" target="_blank">https://doi.org/10.1090/tran/9094</a> | |
dc.identifier.other | CONVID_220759217 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/96064 | |
dc.description.abstract | Let 0 < beta <= alpha < 1 and kappa > 0. I prove that there exists eta > 0 such that the following holds for every pair of Borel sets A, B subset of R with dim(H) A = alpha and dim(H) B = beta: dim(H) {c is an element of R : dim(H) (A + cB) <= alpha + eta} <= alpha-beta/1-beta + kappa. This extends a result of Bourgain from 2010, which contained the case alpha = beta. The paper also contains a delta-discretised, and somewhat stronger, version of the estimate above, and new information on the size of long sums of the form alpha B-1 + ... + alpha B-n.. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Mathematical Society | |
dc.relation.ispartofseries | Transactions of the American Mathematical Society | |
dc.rights | CC BY-NC 4.0 | |
dc.subject.other | discretised sum-product problem | |
dc.subject.other | projections | |
dc.subject.other | Hausdorff dimension. | |
dc.title | On the discretised ABC sum-product problem | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202406204828 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0002-9947 | |
dc.relation.volume | Early online | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2023 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 335479 | |
dc.relation.grantnumber | 343530 | |
dc.relation.grantnumber | 343256 | |
dc.subject.yso | kombinatoriikka | |
dc.subject.yso | fraktaalit | |
dc.subject.yso | lukuteoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4745 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6341 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p1988 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc/4.0/ | |
dc.relation.doi | 10.1090/tran/9094 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Research costs of Academy Research Fellow, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkijan tutkimuskulut, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | The author was supported by the Academy of Finland via the projects Quantitative rectifiability in Euclidean and non-Euclidean spaces and Incidences on Fractals, grant Nos. 309365, 314172, 321896. | |
dc.type.okm | A1 | |