On the discretised ABC sum-product problem
Orponen, T. (2024). On the discretised ABC sum-product problem. Transactions of the American Mathematical Society, Early online. https://doi.org/10.1090/tran/9094
Published in
Transactions of the American Mathematical SocietyAuthors
Date
2024Copyright
© 2023 the Authors
Let 0 < beta <= alpha < 1 and kappa > 0. I prove that there exists eta > 0 such that the following holds for every pair of Borel sets A, B subset of R with dim(H) A = alpha and dim(H) B = beta: dim(H) {c is an element of R : dim(H) (A + cB) <= alpha + eta} <= alpha-beta/1-beta + kappa. This extends a result of Bourgain from 2010, which contained the case alpha = beta. The paper also contains a delta-discretised, and somewhat stronger, version of the estimate above, and new information on the size of long sums of the form alpha B-1 + ... + alpha B-n..
Publisher
American Mathematical SocietyISSN Search the Publication Forum
0002-9947Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/220759217
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Research costs of Academy Research Fellow, AoF; Academy Project, AoF; Academy Research Fellow, AoFAdditional information about funding
The author was supported by the Academy of Finland via the projects Quantitative rectifiability in Euclidean and non-Euclidean spaces and Incidences on Fractals, grant Nos. 309365, 314172, 321896.License
Related items
Showing items with similar title or keywords.
-
Combinatorial proofs of two theorems of Lutz and Stull
Orponen, Tuomas (Cambridge University Press (CUP), 2021)Recently, Lutz and Stull used methods from algorithmic information theory to prove two new Marstrand-type projection theorems, concerning subsets of Euclidean space which are not assumed to be Borel, or even analytic. One ... -
On the dimension of visible parts
Orponen, Tuomas (European Mathematical Society - EMS - Publishing House GmbH, 2023)I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction. -
On the Hausdorff dimension of radial slices
Orponen, Tuomas (Suomen matemaattinen yhdistys, 2024)Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the ... -
On a Continuous Sárközy-Type Problem
Kuca, Borys; Orponen, Tuomas; Sahlsten, Tuomas (Oxford University Press (OUP), 2023)We prove that there exists a constant ϵ>0ϵ>0 with the following property: if K⊂R2K⊂R2 is a compact set that contains no pair of the form {x,x+(z,z2)}{x,x+(z,z2)} for z≠0z≠0, then dimHK≤2−ϵdimHK≤2−ϵ. -
Dimension of projection : Marstrand's theorem
Pesonen, Sofia (2022)Tässä tutkielmassa todistetaan Marstrandin projektiolause käyttäen apuna potentiaaliteoriaa. Projektiolauseen mukaan 2-ulotteisen Borel joukon ortogonaaliprojektion Hausdorffin dimensio on luvun 1 ja kyseisen Borel joukon ...