Näytä suppeat kuvailutiedot

dc.contributor.authorWang, Ranran
dc.contributor.authorQiu, Yusong
dc.contributor.authorWang, Tong
dc.contributor.authorWang, Mingkang
dc.contributor.authorJin, Shan
dc.contributor.authorCong, Fengyu
dc.contributor.authorZhang, Yong
dc.contributor.authorXu, Hongming
dc.date.accessioned2024-04-10T04:41:16Z
dc.date.available2024-04-10T04:41:16Z
dc.date.issued2024
dc.identifier.citationWang, R., Qiu, Y., Wang, T., Wang, M., Jin, S., Cong, F., Zhang, Y., & Xu, H. (2024). MIHIC: a multiplex IHC histopathological image classification dataset for lung cancer immune microenvironment quantification. <i>Frontiers in Immunology</i>, <i>15</i>, Article 1334348. <a href="https://doi.org/10.3389/fimmu.2024.1334348" target="_blank">https://doi.org/10.3389/fimmu.2024.1334348</a>
dc.identifier.otherCONVID_207847773
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/94231
dc.description.abstractBackground: Immunohistochemistry (IHC) is a widely used laboratory technique for cancer diagnosis, which selectively binds specific antibodies to target proteins in tissue samples and then makes the bound proteins visible through chemical staining. Deep learning approaches have the potential to be employed in quantifying tumor immune micro-environment (TIME) in digitized IHC histological slides. However, it lacks of publicly available IHC datasets explicitly collected for the in-depth TIME analysis. Method: In this paper, a notable Multiplex IHC Histopathological Image Classification (MIHIC) dataset is created based on manual annotations by pathologists, which is publicly available for exploring deep learning models to quantify variables associated with the TIME in lung cancer. The MIHIC dataset comprises of totally 309,698 multiplex IHC stained histological image patches, encompassing seven distinct tissue types: Alveoli, Immune cells, Necrosis, Stroma, Tumor, Other and Background. By using the MIHIC dataset, we conduct a series of experiments that utilize both convolutional neural networks (CNNs) and transformer models to benchmark IHC stained histological image classifications. We finally quantify lung cancer immune microenvironment variables by using the top-performing model on tissue microarray (TMA) cores, which are subsequently used to predict patients’ survival outcomes. Result: Experiments show that transformer models tend to provide slightly better performances than CNN models in histological image classifications, although both types of models provide the highest accuracy of 0.811 on the testing dataset in MIHIC. The automatically quantified TIME variables, which reflect proportions of immune cells over stroma and tumor over tissue core, show prognostic value for overall survival of lung cancer patients. Conclusion: To the best of our knowledge, MIHIC is the first publicly available lung cancer IHC histopathological dataset that includes images with 12 different IHC stains, meticulously annotated by multiple pathologists across 7 distinct categories. This dataset holds significant potential for researchers to explore novel techniques for quantifying the TIME and advancing our understanding of the interactions between the immune system and tumors.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.ispartofseriesFrontiers in Immunology
dc.rightsCC BY 4.0
dc.subject.otherlung cancer
dc.subject.otherimmunohistochemical image
dc.subject.otherdatabase
dc.subject.otherimage classification
dc.subject.othertransformer models
dc.titleMIHIC: a multiplex IHC histopathological image classification dataset for lung cancer immune microenvironment quantification
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202404102797
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1664-3224
dc.relation.volume15
dc.type.versionpublishedVersion
dc.rights.copyright© 2024 Wang, Qiu, Wang, Wang, Jin, Cong, Zhang and Xu
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokeuhkosyöpä
dc.subject.ysopatologia
dc.subject.ysolaboratoriotekniikka
dc.subject.ysoimmunohistokemia
dc.subject.ysokasvaimet
dc.subject.ysodiagnostiikka
dc.subject.ysokuva-analyysi
dc.subject.ysosyöpätaudit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p19573
jyx.subject.urihttp://www.yso.fi/onto/yso/p7343
jyx.subject.urihttp://www.yso.fi/onto/yso/p19594
jyx.subject.urihttp://www.yso.fi/onto/yso/p26144
jyx.subject.urihttp://www.yso.fi/onto/yso/p2299
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
jyx.subject.urihttp://www.yso.fi/onto/yso/p16870
jyx.subject.urihttp://www.yso.fi/onto/yso/p678
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3389/fimmu.2024.1334348
jyx.fundinginformationThe author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported in part by the National Natural Science Foundation of China (82102135), the National Key Research and Development Program of China (2022YFC3902100), the Natural Science Foundation of Liaoning Province (2022-YGJC-36), and the Fundamental Research Funds for Central Universities (DUT22YG114, DUT23YG130).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0