The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
Tekijät
Päivämäärä
2022Tekijänoikeudet
Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.
Tässä Pro gradu-työssä tutkitaan konvoluutioneuroverkkojen käyttömahdollisuuksia histopatologisista kuvista tehtävässä kasvain-strooma suhdeluvun arvioinnissa. Tarkoituksena on selvittää, mikä on siirto-opettamisen vaikutus, kun opettamisessa käytetään kohdealuespesifistä dataa. Mallin ennustamaa kasvain-strooma suhdelukua verrataan patologin visuaalisesti tekemään arvioon. Tutkimuksesta selvisi, että kohdealuespesifisen datan käyttö esiopetuksessa lisää konvoluutioneuroverkkomallin tarkkuutta. Myös korrelaatiota ennustetun ja visuaalisen arvion välillä
oli havaittavissa. Tulevaisuudessa olisi hyvä tutkia kasvain-strooma-suhdeluvun yhteyttä muihin kliinispatologisiin tekijöihin ja potilaan elinaikaan. In this Master’s Thesis, the ability of convolutional neural networks in the evaluation of tumor-stroma ratio from histopathological images, is studied. The goal is to find
out, whether pre-training with domain-specific data brings more accuracy to the convolutional neural network model. Tumor-stroma ratio is predicted with the trained model and the predicted values are compared with visual tumor-stroma estimations made by pathologist. When domain-specific data was used in the pre-training of the convolutional neural network, a slight improvement in the validation accuracy of the model was observed. Correlation between the predicted and visual values was also found. Further analysis is needed to study what is the connection of these computationally predicted values to other clinicopathological factors and overall survival of the patient.
Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Pro gradu -tutkielmat [29613]
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Domain-specific transfer learning in the automated scoring of tumor-stroma ratio from histopathological images of colorectal cancer
Petäinen, Liisa; Väyrynen, Juha P.; Ruusuvuori, Pekka; Pölönen, Ilkka; Äyrämö, Sami; Kuopio, Teijo (Public Library of Science (PLoS), 2023)Tumor-stroma ratio (TSR) is a prognostic factor for many types of solid tumors. In this study, we propose a method for automated estimation of TSR from histopathological images of colorectal cancer. The method is based on ... -
Causality-Aware Convolutional Neural Networks for Advanced Image Classification and Generation
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2023)Smart manufacturing uses emerging deep learning models, and particularly Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), for different industrial diagnostics tasks, e.g., classification, ... -
Taxonomy-Informed Neural Networks for Smart Manufacturing
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2024)A neural network (NN) is known to be an efficient and learnable tool supporting decision-making processes particularly in Industry 4.0. The majority of NNs are data-driven and, therefore, depend on training data quantity ... -
Improving Performance in Colorectal Cancer Histology Decomposition using Deep and Ensemble Machine Learning
Prezja, Fabi; Annala, Leevi; Kiiskinen, Sampsa; Lahtinen, Suvi; Ojala, Timo; Ruusuvuori, Pekka; Kuopio, Teijo (Elsevier, 2024)In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment ... -
Transformers for breast cancer classification
Lindroos, Jari (2022)Rintasyöpä on maailmanlaajuisesti naisten yleisin syöpä, sen varhainen havaitseminen voi merkittävästi vähentää siihen liittyvää kuolleisuutta. Histopatologista analyysiä tarvitaan kasvainten laadun määrittämiseksi ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.