MIHIC: a multiplex IHC histopathological image classification dataset for lung cancer immune microenvironment quantification
Wang, R., Qiu, Y., Wang, T., Wang, M., Jin, S., Cong, F., Zhang, Y., & Xu, H. (2024). MIHIC: a multiplex IHC histopathological image classification dataset for lung cancer immune microenvironment quantification. Frontiers in Immunology, 15, Article 1334348. https://doi.org/10.3389/fimmu.2024.1334348
Julkaistu sarjassa
Frontiers in ImmunologyTekijät
Päivämäärä
2024Tekijänoikeudet
© 2024 Wang, Qiu, Wang, Wang, Jin, Cong, Zhang and Xu
Background: Immunohistochemistry (IHC) is a widely used laboratory technique for cancer diagnosis, which selectively binds specific antibodies to target proteins in tissue samples and then makes the bound proteins visible through chemical staining. Deep learning approaches have the potential to be employed in quantifying tumor immune micro-environment (TIME) in digitized IHC histological slides. However, it lacks of publicly available IHC datasets explicitly collected for the in-depth TIME analysis.
Method: In this paper, a notable Multiplex IHC Histopathological Image Classification (MIHIC) dataset is created based on manual annotations by pathologists, which is publicly available for exploring deep learning models to quantify variables associated with the TIME in lung cancer. The MIHIC dataset comprises of totally 309,698 multiplex IHC stained histological image patches, encompassing seven distinct tissue types: Alveoli, Immune cells, Necrosis, Stroma, Tumor, Other and Background. By using the MIHIC dataset, we conduct a series of experiments that utilize both convolutional neural networks (CNNs) and transformer models to benchmark IHC stained histological image classifications. We finally quantify lung cancer immune microenvironment variables by using the top-performing model on tissue microarray (TMA) cores, which are subsequently used to predict patients’ survival outcomes.
Result: Experiments show that transformer models tend to provide slightly better performances than CNN models in histological image classifications, although both types of models provide the highest accuracy of 0.811 on the testing dataset in MIHIC. The automatically quantified TIME variables, which reflect proportions of immune cells over stroma and tumor over tissue core, show prognostic value for overall survival of lung cancer patients.
Conclusion: To the best of our knowledge, MIHIC is the first publicly available lung cancer IHC histopathological dataset that includes images with 12 different IHC stains, meticulously annotated by multiple pathologists across 7 distinct categories. This dataset holds significant potential for researchers to explore novel techniques for quantifying the TIME and advancing our understanding of the interactions between the immune system and tumors.
...
Julkaisija
Frontiers MediaISSN Hae Julkaisufoorumista
1664-3224Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207847773
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported in part by the National Natural Science Foundation of China (82102135), the National Key Research and Development Program of China (2022YFC3902100), the Natural Science Foundation of Liaoning Province (2022-YGJC-36), and the Fundamental Research Funds for Central Universities (DUT22YG114, DUT23YG130). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Prognostic significance of spatial and density analysis of T lymphocytes in colorectal cancer
Elomaa, Hanna; Ahtiainen, Maarit; Väyrynen, Sara A.; Ogino, Shuji; Nowak, Jonathan A.; Friman, Marjukka; Helminen, Olli; Wirta, Erkki-Ville; Seppälä, Toni T.; Böhm, Jan; Mäkinen, Markus J.; Mecklin, Jukka-Pekka; Kuopio, Teijo; Väyrynen, Juha P. (Nature Publishing Group, 2022)BACKGROUND: Although high T cell density is a strong favourable prognostic factor in colorectal cancer, the significance of the spatial distribution of T cells is incompletely understood. We aimed to evaluate the prognostic ... -
H&E Multi-Laboratory Staining Variance Exploration with Machine Learning
Prezja, Fabi; Pölönen, Ilkka; Äyrämö, Sami; Ruusuvuori, Pekka; Kuopio, Teijo (MDPI, 2022)In diagnostic histopathology, hematoxylin and eosin (H&E) staining is a critical process that highlights salient histological features. Staining results vary between laboratories regardless of the histopathological task, ... -
Optimization of cyclic multiplex immunohistochemistry staining for fresh frozen brain tumor samples
Savola, Noora (2024)Mapping the tumor microenvironment provides essential information about cancer diagnosis, progression, and possible treatments. Glioblastoma is the most common primary malignant brain tumor where tumor heterogeneity together ... -
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
Petäinen, Liisa (2022)Tässä Pro gradu-työssä tutkitaan konvoluutioneuroverkkojen käyttömahdollisuuksia histopatologisista kuvista tehtävässä kasvain-strooma suhdeluvun arvioinnissa. Tarkoituksena on selvittää, mikä on siirto-opettamisen vaikutus, ... -
ROS1 gene rearrangements in non-small cell lung cancer : immunohistochemistry and fluorescence in situ hybridization
Tynkkynen, Niko (2020)Keuhkosyöpä on maailman yleisin syöpäkuolemien aiheuttaja. Histologisesti se jaetaan pienisoluiseen (15 %) ja ei-pienisoluiseen (85 %) keuhkosyöpään (engl. non-small cell lung cancer, NSCLC). ROS1-geenin uudelleenjärjestäytymät ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.