Absolutely minimizing Lipschitz extensions on a metric space
Juutinen, P. (2002). Absolutely minimizing Lipschitz extensions on a metric space. Annales Academiae Scientiarum Fennicae. Mathematica, 27, 57-67. https://www.acadsci.fi/mathematica/Vol27/juutinen.html
Julkaistu sarjassa
Annales Academiae Scientiarum Fennicae. MathematicaTekijät
Päivämäärä
2002Tekijänoikeudet
© 2002 Suomalainen tiedeakatemia
In this note, we consider the problem of finding an absolutely minimizing Lipschitz extension of a given function defined in a subset of an arbitrary metric space. Using a version of Perron’s method due to Aronsson, we prove the existence under the assumption that the space is a separable length space.
Julkaisija
Suomalainen tiedeakatemiaISSN Hae Julkaisufoorumista
1239-629X
Alkuperäislähde
https://www.acadsci.fi/mathematica/Vol27/juutinen.htmlJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/29081672
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, Sylvester; Gartland, Chris; Le Donne, Enrico; Naples, Lisa; Nicolussi Golo, Sebastiano (Oxford University Press (OUP), 2023)We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is ... -
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
Fässler, Katrin; Le Donne, Enrico (Springer, 2021)This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give ... -
Sobolev, BV and perimeter extensions in metric measure spaces
Caputo, Emanuele; Koivu, Jesse; Rajala, Tapio (Suomen matemaattinen yhdistys, 2024)We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV-extension property if and only if it has the strong extension property for sets of finite perimeter. ... -
Approximation by BV-extension Sets via Perimeter Minimization in Metric Spaces
Koivu, Jesse; Lučić, Danka; Rajala, Tapio (Oxford University Press (OUP), 2024)We show that every bounded domain in a metric measure space can be approximated in measure from inside by closed BV-extension sets. The extension sets are obtained by minimizing the sum of the perimeter and the measure of ... -
The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, Panu (Elsevier Masson, 2019)In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.