The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, P. (2019). The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces. Journal de Mathematiques Pures et Appliquees, 126, 195-213. https://doi.org/10.1016/j.matpur.2019.01.004
Julkaistu sarjassa
Journal de Mathematiques Pures et AppliqueesTekijät
Päivämäärä
2019Tekijänoikeudet
© 2019 Elsevier Masson SAS.
In the setting of a complete metric space that is equipped with a
doubling measure and supports a Poincar´e inequality, we prove the
fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet
property for the fine topology in the case p = 1.
Dans un contexte d’espace m´etrique complet muni d’une mesure
doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la
propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e
de Choquet pour la topologie fine dans le cas p = 1.
Julkaisija
Elsevier MassonISSN Hae Julkaisufoorumista
0021-7824Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/28881244
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, Panu (Suomalainen tiedeakatemia, 2018)In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p = 1. Then we use this property to prove the ... -
Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Elsevier, 2020)We study (p-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive ... -
Quasispheres and metric doubling measures
Lohvansuu, Atte; Rajala, Kai; Rasimus, Martti (American Mathematical Society, 2018)Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere X is a quasisphere if and only if X is linearly locally connected and carries a weak metric doubling measure, ... -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.