The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, P. (2019). The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces. Journal de Mathematiques Pures et Appliquees, 126, 195-213. doi:10.1016/j.matpur.2019.01.004
Published in
Journal de Mathematiques Pures et AppliqueesAuthors
Date
2019Discipline
MatematiikkaCopyright
© 2019 Elsevier Masson SAS.
In the setting of a complete metric space that is equipped with a
doubling measure and supports a Poincar´e inequality, we prove the
fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet
property for the fine topology in the case p = 1.
Dans un contexte d’espace m´etrique complet muni d’une mesure
doublante et supportant une in´egalit´e de Poincar´e, nous d´emontrons la
propri´et´e fine de Kellogg, le quasi-principe de Lindel¨of, et la propri´et´e
de Choquet pour la topologie fine dans le cas p = 1.
Publisher
Elsevier MassonISSN Search the Publication Forum
0021-7824Keywords
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Elsevier, 2020)We study (p-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive ... -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Self-improvement of pointwise Hardy inequality
Eriksson-Bique, Sylvester; Vähäkangas, Antti V. (American Mathematical Society, 2019)We prove the self-improvement of a pointwise p-Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves. -
Singular quasisymmetric mappings in dimensions two and greater
Romney, Matthew (Academic Press, 2019)For all n ≥2, we construct a metric space (X, d)and a quasisymmetric mapping f:[0, 1]n→X with the property that f−1 is not absolutely continuous with respect to the Hausdorff n-measure on X. That is, there exists a Borel ...