On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
Fässler, K., & Le Donne, E. (2021). On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups. Geometriae Dedicata, 210(1), 27-42. https://doi.org/10.1007/s10711-020-00532-8
Julkaistu sarjassa
Geometriae DedicataPäivämäärä
2021Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköGeometrinen analyysi ja matemaattinen fysiikkaMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)Geometric Analysis and Mathematical PhysicsMathematicsTekijänoikeudet
© The Authors, 2020
This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries and we compare the quasi-isometric classification with the bi-Lipschitz classification. On the other hand, we study the problem whether two quasi-isometrically equivalent Lie groups may be made isometric if equipped with suitable left-invariant Riemannian metrics. We show that this is the case for three-dimensional simply connected groups, but it is not true in general for multiply connected groups. The counterexample also demonstrates that ‘may be made isometric’ is not a transitive relation.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0046-5755Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/35662662
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
Katrin Fässler was partially supported by the Academy of Finland (Grant 285159 ‘Sub-Riemannian manifolds from a quasiconformal viewpoint’) and by the Swiss National Science Foundation (Grant 161299 ‘Intrinsic rectifiability and mapping theory on the Heisenberg group’). Enrico Le Donne was partially supported by the Academy of Finland (Grant 288501 ‘Geometry of subRiemannian groups’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, Sylvester; Gartland, Chris; Le Donne, Enrico; Naples, Lisa; Nicolussi Golo, Sebastiano (Oxford University Press (OUP), 2023)We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is ... -
Metric equivalences of Heintze groups and applications to classifications in low dimension
Kivioja, Ville; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Duke University Press, 2022)We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between ... -
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
Le Donne, Enrico; Moisala, Terhi (Springer, 2021)This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our ... -
Topics in the geometry of non-Riemannian lie groups
Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017) -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.