Nilpotent Groups and Bi-Lipschitz Embeddings Into L1
Eriksson-Bique, S., Gartland, C., Le Donne, E., Naples, L., & Nicolussi Golo, S. (2023). Nilpotent Groups and Bi-Lipschitz Embeddings Into L1. International Mathematics Research Notices, 2023(12), 10759-10797. https://doi.org/10.1093/imrn/rnac264
Julkaistu sarjassa
International Mathematics Research NoticesTekijät
Päivämäärä
2023Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköGeometrinen analyysi ja matemaattinen fysiikkaMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)Geometric Analysis and Mathematical PhysicsMathematicsTekijänoikeudet
© The Author(s) 2022. Published by Oxford University Press.
We prove that if a simply connected nilpotent Lie group quasi-isometrically embeds into an L1 space, then it is abelian. We reach this conclusion by proving that every Carnot group that bi-Lipschitz embeds into L1 is abelian. Our proof follows the work of Cheeger and Kleiner, by considering the pull-back distance of a Lipschitz map into L1 and representing it using a cut measure. We show that such cut measures, and the induced distances, can be blown up and the blown-up cut measure is supported on “generic” tangents of the original sets. By repeating such a blow-up procedure, one obtains a cut measure supported on half-spaces. This differentiation result then is used to prove that bi-Lipschitz embeddings can not exist in the non-abelian settings.
Julkaisija
Oxford University Press (OUP)ISSN Hae Julkaisufoorumista
1073-7928Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/159301233
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen Akatemia; Euroopan komissioRahoitusohjelmat(t)
Akatemiatutkijan tutkimuskulut, SA; Akatemiahanke, SA; Akatemiatutkija, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
S.E.-B. was supported partially by the Finnish Academy [grant # 345005]. E.L.D. was partially supported by the Academy of Finland [grant 288501 “Geometry of Sub-Riemannian Groups” and grant 322898 “Sub-Riemannian Geometry via Metric-Geometry and Lie-Group Theory”] and by the European Research Council [ERC Starting Grant 713998 GeoMeG “Geometry of Metric Groups”]. S.N.G. was supported by the Academy of Finland [grant 328846 “Singular Integrals, Harmonic Functions, and Boundary Regularity in Heisenberg Groups”, grant 322898 “Sub-Riemannian Geometry via Metric-Geometry and Lie-Group Theory”, and grant 314172 “Quantitative Rectifiability in Euclidean and Non-Euclidean Spaces”]. ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
Fässler, Katrin; Le Donne, Enrico (Springer, 2021)This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give ... -
Metric equivalences of Heintze groups and applications to classifications in low dimension
Kivioja, Ville; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Duke University Press, 2022)We approach the quasi-isometric classification questions on Lie groups by considering low dimensional cases and isometries alongside quasi-isometries. First, we present some new results related to quasi-isometries between ... -
Lipschitz Functions on Submanifolds of Heisenberg Groups
Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide (Oxford University Press (OUP), 2023)We study the behavior of Lipschitz functions on intrinsic C1 submanifolds of Heisenberg groups: our main result is their almost everywhere tangential Pansu differentiability. We also provide two applications: a Lusin-type ... -
A Cornucopia of Carnot Groups in Low Dimensions
Le Donne, Enrico; Tripaldi, Francesca (Walter de Gruyter GmbH, 2022)Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path ... -
Space of signatures as inverse limits of Carnot groups
Le Donne, Enrico; Züst, Roger (EDP Sciences, 2021)We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.