Sobolev, BV and perimeter extensions in metric measure spaces
Caputo, E., Koivu, J., & Rajala, T. (2024). Sobolev, BV and perimeter extensions in metric measure spaces. Annales Fennici Mathematici, 49(1), 135-165. https://doi.org/10.54330/afm.143899
Julkaistu sarjassa
Annales Fennici MathematiciPäivämäärä
2024Tekijänoikeudet
© 2024 The Finnish Mathematical Society
We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV-extension property if and only if it has the strong extension property for sets of finite perimeter. We also prove several implications between the strong BV-extension property and extendability of two different non-equivalent versions of Sobolev W 1,1 -spaces and show via examples that the remaining implications fail. Tutkimme joukkojen ja funktioiden laajennuksia yleisissä metrisissä mitta-avaruuksissa. Osoitamme, että avoimella joukolla on vahva BV-laajennusominaisuus jos ja vain jos sillä on vahva laajennusominaisuus äärellisperimetrisille joukoille. Tutkimme myös vahvan BV-laajennuksen yhteyttä kahteen eri versioon Sobolev W1,1-laajennuksista todistaen ne tapaukset missä yksi laajennusominaisuus antaa toisen sekä antamalla vastaesimerkit jäljelle jääviin tapauksiin
Julkaisija
Suomen matemaattinen yhdistysISSN Hae Julkaisufoorumista
2737-0690Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207652935
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The authors acknowledge the support from the Academy of Finland, grant no. 314789. The first named author also thanks the support from Academy of Finland, grant no. 321896.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Differential of metric valued Sobolev maps
Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Elsevier, 2020)We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove ... -
Tensorization of p-weak differentiable structures
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (Elsevier, 2024)We consider p-weak differentiable structures that were recently introduced in [9], and prove that the product of p-weak charts is a p-weak chart. This implies that the product of two spaces with a p-weak differentiable ... -
Approximation by uniform domains in doubling quasiconvex metric spaces
Rajala, Tapio (Springer, 2021)We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains. -
Approximation by BV-extension Sets via Perimeter Minimization in Metric Spaces
Koivu, Jesse; Lučić, Danka; Rajala, Tapio (Oxford University Press (OUP), 2024)We show that every bounded domain in a metric measure space can be approximated in measure from inside by closed BV-extension sets. The extension sets are obtained by minimizing the sum of the perimeter and the measure of ... -
A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, Panu (Suomalainen tiedeakatemia, 2018)In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p = 1. Then we use this property to prove the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.