Approximation by BV-extension Sets via Perimeter Minimization in Metric Spaces
Koivu, J., Lučić, D., & Rajala, T. (2024). Approximation by BV-extension Sets via Perimeter Minimization in Metric Spaces. International Mathematics Research Notices, Early online. https://doi.org/10.1093/imrn/rnae048
Julkaistu sarjassa
International Mathematics Research NoticesPäivämäärä
2024Tekijänoikeudet
© 2024 the Authors
We show that every bounded domain in a metric measure space can be approximated in measure from inside by closed BV-extension sets. The extension sets are obtained by minimizing the sum of the perimeter and the measure of the difference between the domain and the set. By earlier results, in PI spaces the minimizers have open representatives with locally quasiminimal surface. We give an example in a PI space showing that the open representative of the minimizer need not be a BVextension domain nor locally John.
Julkaisija
Oxford University Press (OUP)ISSN Hae Julkaisufoorumista
1073-7928Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/207749898
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Sobolev, BV and perimeter extensions in metric measure spaces
Caputo, Emanuele; Koivu, Jesse; Rajala, Tapio (Suomen matemaattinen yhdistys, 2024)We study extensions of sets and functions in general metric measure spaces. We show that an open set has the strong BV-extension property if and only if it has the strong extension property for sets of finite perimeter. ... -
Isometric embeddings of snowflakes into finite-dimensional Banach spaces
Le Donne, Enrico; Rajala, Tapio; Walsberg, Erik (American Mathematical Society, 2018)We consider a general notion of snowflake of a metric space by composing the distance with a nontrivial concave function. We prove that a snowflake of a metric space X isometrically embeds into some finite-dimensional ... -
Approximation by uniform domains in doubling quasiconvex metric spaces
Rajala, Tapio (Springer, 2021)We show that any bounded domain in a doubling quasiconvex metric space can be approximated from inside and outside by uniform domains. -
Differential of metric valued Sobolev maps
Gigli, Nicola; Pasqualetto, Enrico; Soultanis, Elefterios (Elsevier, 2020)We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove ... -
Tensorization of p-weak differentiable structures
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (Elsevier, 2024)We consider p-weak differentiable structures that were recently introduced in [9], and prove that the product of p-weak charts is a p-weak chart. This implies that the product of two spaces with a p-weak differentiable ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.