On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane
Orponen, T., & Shmerkin, P. (2023). On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane. Duke Mathematical Journal, 172(18), 3559-3632. https://doi.org/10.1215/00127094-2022-0103
Published in
Duke Mathematical JournalDate
2023Copyright
© 2023 Duke University Press
Let 0 s 1 and 0 t 2. An .s;t/-Furstenberg set is a set K R2 with the following property: there exists a line set L of Hausdorff dimension dimH L t such that dimH.K \ `/ s for all ` 2 L. We prove that for s 2 .0;1/ and t 2 .s;2, the Hausdorff dimension of .s;t/-Furstenberg sets in R2 is no smaller than 2s C , where >0 depends only on s and t. For s > 1=2 and t D 1, this is an -improvement over a result of Wolff from 1999. The same method also yields an -improvement to Kaufman’s projection theorem from 1968. We show that if s 2 .0;1/, t 2 .s;2, and K R2 is an analytic set with dimH K D t, then dimH ® e 2 S1 W dimH e.K/ s ¯ s ; where >0 depends only on s and t. Here e is the orthogonal projection to the line in direction e.
Publisher
Duke University PressISSN Search the Publication Forum
0012-7094Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/207392649
Metadata
Show full item recordCollections
Additional information about funding
Orponen’s work was partially supported by Academy of Finland grants 309365, 314172, and 321896 via the projects “Quantitative rectifiability in Euclidean and nonEuclidean spaces” and “Incidences on fractals.” Shmerkin’s work was partially supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant.License
Related items
Showing items with similar title or keywords.
-
Integrability of orthogonal projections, and applications to Furstenberg sets
Dąbrowski, Damian; Orponen, Tuomas; Villa, Michele (Elsevier BV, 2022) -
Dimension estimates on circular (s,t)-Furstenberg sets
Liu, Jiayin (Suomen matemaattinen yhdistys ry, 2023)Tässä työssä osoitetaan, että tason R2Furstenbergin (s,t)-ympyräjoukkojen Hausdorffin ulottuvuus on vähintään max{t3+s,(2t+ 1)s−t} kaikilla 0< s,t≤1. Tämä tulos yleistää Wolffin aiemmin todistamia Kakeyan ympyräjoukkojen ... -
On the upper Minkowski dimension, the packing dimension, and orthogonal projections
Järvenpää, Maarit (1994) -
On the Hausdorff dimension of radial slices
Orponen, Tuomas (Suomen matemaattinen yhdistys, 2024)Let t∈(1,2), and let B⊂R2 be a Borel set with dimHB>t. I show that H1({e∈S1:dimH(B∩ℓx,e)≥t−1})>0 for all x∈R2∖E, where dimHE≤2−t. This is the sharp bound for dimHE. The main technical tool is an incidence inequality of the ... -
On the dimension of visible parts
Orponen, Tuomas (European Mathematical Society - EMS - Publishing House GmbH, 2023)I prove that the visible parts of a compact set in Rn, n≥2, have Hausdorff dimension at most n − 1/50n from almost every direction.