dc.contributor.author | Orponen, Tuomas | |
dc.contributor.author | Shmerkin, Pablo | |
dc.date.accessioned | 2024-03-05T10:36:35Z | |
dc.date.available | 2024-03-05T10:36:35Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Orponen, T., & Shmerkin, P. (2023). On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane. <i>Duke Mathematical Journal</i>, <i>172</i>(18), 3559-3632. <a href="https://doi.org/10.1215/00127094-2022-0103" target="_blank">https://doi.org/10.1215/00127094-2022-0103</a> | |
dc.identifier.other | CONVID_207392649 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/93807 | |
dc.description.abstract | Let 0 s 1 and 0 t 2. An .s;t/-Furstenberg set is a set K R2 with the following property: there exists a line set L of Hausdorff dimension dimH L t such that dimH.K \ `/ s for all ` 2 L. We prove that for s 2 .0;1/ and t 2 .s;2, the Hausdorff dimension of .s;t/-Furstenberg sets in R2 is no smaller than 2s C , where >0 depends only on s and t. For s > 1=2 and t D 1, this is an -improvement over a result of Wolff from 1999. The same method also yields an -improvement to Kaufman’s projection theorem from 1968. We show that if s 2 .0;1/, t 2 .s;2, and K R2 is an analytic set with dimH K D t, then dimH ® e 2 S1 W dimH e.K/ s ¯ s ; where >0 depends only on s and t. Here e is the orthogonal projection to the line in direction e. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Duke University Press | |
dc.relation.ispartofseries | Duke Mathematical Journal | |
dc.rights | In Copyright | |
dc.subject.other | Furstenberg sets | |
dc.subject.other | Hausdorff dimension | |
dc.subject.other | induction on scales | |
dc.subject.other | projections | |
dc.title | On the Hausdorff dimension of Furstenberg sets and orthogonal projections in the plane | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202403052274 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 3559-3632 | |
dc.relation.issn | 0012-7094 | |
dc.relation.numberinseries | 18 | |
dc.relation.volume | 172 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2023 Duke University Press | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | mittateoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1215/00127094-2022-0103 | |
jyx.fundinginformation | Orponen’s work was partially supported by Academy of Finland grants 309365, 314172, and 321896 via the projects “Quantitative rectifiability in Euclidean and nonEuclidean spaces” and “Incidences on fractals.” Shmerkin’s work was partially supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) discovery grant. | |
dc.type.okm | A1 | |