Näytä suppeat kuvailutiedot

dc.contributor.authorFässler, Katrin
dc.contributor.authorOrponen, Tuomas
dc.date.accessioned2023-08-30T07:26:03Z
dc.date.available2023-08-30T07:26:03Z
dc.date.issued2023
dc.identifier.citationFässler, K., & Orponen, T. (2023). Vertical projections in the Heisenberg group via cinematic functions and point-plate incidences. <i>Advances in Mathematics</i>, <i>431</i>, Article 109248. <a href="https://doi.org/10.1016/j.aim.2023.109248" target="_blank">https://doi.org/10.1016/j.aim.2023.109248</a>
dc.identifier.otherCONVID_184147837
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/88780
dc.description.abstractLet {πe : H → We : e ∈ S1} be the family of vertical projections in the first Heisenberg group H. We prove that if K ⊂ H is a Borel set with Hausdorff dimension dimH K ∈ [0, 2] ∪ {3}, then dimH πe(K) ≥ dimH K for H1 almost every e ∈ S1. This was known earlier if dimH K ∈ [0, 1]. The proofs for dimH K ∈ [0, 2] and dimH K = 3 are based on different techniques. For dimH K ∈ [0, 2], we reduce matters to a Euclidean problem, and apply the method of cinematic functions due to Pramanik, Yang, and Zahl. To handle the case dimH K = 3, we introduce a point-line duality between horizontal lines and conical lines in R3. This allows us to transform the Heisenberg problem into a point plate incidence question in R3. To solve the latter, we apply a Kakeya inequality for plates in R3, due to Guth, Wang, and Zhang. This method also yields partial results for Borel sets K ⊂ H with dimH K ∈ (5/2, 3).en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesAdvances in Mathematics
dc.rightsCC BY 4.0
dc.subject.othervertical projections
dc.subject.otherHeisenberg group
dc.subject.otherHausdorff dimension
dc.subject.otherincidences
dc.titleVertical projections in the Heisenberg group via cinematic functions and point-plate incidences
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202308304816
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0001-8708
dc.relation.volume431
dc.type.versionpublishedVersion
dc.rights.copyright© 2023 The Author(s). Published by Elsevier Inc.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber321696
dc.subject.ysomittateoria
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.aim.2023.109248
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationK.F. is supported by the Academy of Finland via the project Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups, grant No. 321696. T.O. is supported by the Academy of Finland via the project Incidences on Fractals, grant No. 321896.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0