dc.contributor.author | Fässler, Katrin | |
dc.contributor.author | Orponen, Tuomas | |
dc.date.accessioned | 2023-08-30T07:26:03Z | |
dc.date.available | 2023-08-30T07:26:03Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Fässler, K., & Orponen, T. (2023). Vertical projections in the Heisenberg group via cinematic functions and point-plate incidences. <i>Advances in Mathematics</i>, <i>431</i>, Article 109248. <a href="https://doi.org/10.1016/j.aim.2023.109248" target="_blank">https://doi.org/10.1016/j.aim.2023.109248</a> | |
dc.identifier.other | CONVID_184147837 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/88780 | |
dc.description.abstract | Let {πe : H → We : e ∈ S1} be the family of vertical projections in the first Heisenberg group H. We prove that if K ⊂ H is a Borel set with Hausdorff dimension dimH K ∈ [0, 2] ∪ {3}, then dimH πe(K) ≥ dimH K for H1 almost every e ∈ S1. This was known earlier if dimH K ∈ [0, 1]. The proofs for dimH K ∈ [0, 2] and dimH K = 3 are based on different techniques. For dimH K ∈ [0, 2], we reduce matters to a Euclidean problem, and apply the method of cinematic functions due to Pramanik, Yang, and Zahl. To handle the case dimH K = 3, we introduce a point-line duality between horizontal lines and conical lines in R3. This allows us to transform the Heisenberg problem into a point plate incidence question in R3. To solve the latter, we apply a Kakeya inequality for plates in R3, due to Guth, Wang, and Zhang. This method also yields partial results for Borel sets K ⊂ H with dimH K ∈ (5/2, 3). | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Advances in Mathematics | |
dc.rights | CC BY 4.0 | |
dc.subject.other | vertical projections | |
dc.subject.other | Heisenberg group | |
dc.subject.other | Hausdorff dimension | |
dc.subject.other | incidences | |
dc.title | Vertical projections in the Heisenberg group via cinematic functions and point-plate incidences | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202308304816 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0001-8708 | |
dc.relation.volume | 431 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2023 The Author(s). Published by Elsevier Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 321696 | |
dc.subject.yso | mittateoria | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13386 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.aim.2023.109248 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Research Fellow, AoF | en |
jyx.fundingprogram | Akatemiatutkija, SA | fi |
jyx.fundinginformation | K.F. is supported by the Academy of Finland via the project Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups, grant No. 321696. T.O. is supported by the Academy of Finland via the project Incidences on Fractals, grant No. 321896. | |
dc.type.okm | A1 | |