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Let {πe : H → We : e ∈ S1} be the family of vertical 
projections in the first Heisenberg group H. We prove that 
if K ⊂ H is a Borel set with Hausdorff dimension dimH K ∈
[0, 2] ∪ {3}, then

dimH πe(K) ≥ dimH K

for H1 almost every e ∈ S1. This was known earlier if 
dimH K ∈ [0, 1].
The proofs for dimH K ∈ [0, 2] and dimH K = 3 are based on 
different techniques. For dimH K ∈ [0, 2], we reduce matters 
to a Euclidean problem, and apply the method of cinematic 
functions due to Pramanik, Yang, and Zahl.
To handle the case dimH K = 3, we introduce a point-line 
duality between horizontal lines and conical lines in R3. This 
allows us to transform the Heisenberg problem into a point-
plate incidence question in R3. To solve the latter, we apply a 
Kakeya inequality for plates in R3, due to Guth, Wang, and 
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Zhang. This method also yields partial results for Borel sets 
K ⊂ H with dimH K ∈ (5/2, 3).
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).
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1. Introduction

Fix e ∈ S1×{0} ⊂ H, and consider the vertical plane We := e⊥ in the first Heisenberg 
group H, see Section 2 for the definitions. Every point p ∈ H can be uniquely decomposed 
as p = w · v, where

w ∈ We and v ∈ Le := span(e).

This decomposition gives rise to the vertical projection πe := πWe
: H → We, defined 

by πe(p) := w. A good way to visualise πe is to note that the fibres π−1
e {w}, w ∈ We, 

coincide with the horizontal lines w ·Le. These lines foliate H, as w ranges in We, but are 
not parallel. Thus, the projections πe are non-linear maps with linear fibres. For example, 
in the special cases e1 = (1, 0, 0) and e2 = (0, 1, 0) we have the concrete formulae

πe1(x, y, t) =
(
0, y, t + xy

2
)

and πe2(x, y, t) =
(
x, 0, t− xy

2
)
. (1.1)

From the point of view of geometric measure theory in the Heisenberg group, the vertical 
projections are the Heisenberg analogues of orthogonal projections to (d − 1)-planes in 
Rd. One of the fundamental theorems concerning orthogonal projections in Rd is the 
Marstrand-Mattila projection theorem [19,20]: if K ⊂ Rd is a Borel set, then

dimE πV (K) = min{dimE K, d− 1} (1.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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for almost all (d − 1)-planes V ⊂ Rd. Here dimE refers to Hausdorff dimension in Eu-
clidean space – in contrast to the notation “dimH” which will refer to Hausdorff dimension 
in the Heisenberg group. In Rd, orthogonal projections are Lipschitz maps, so the upper 
bound in (1.2) is trivial, and the main interest in (1.2) is the lower bound.

The vertical projections πe are not Lipschitz maps H → We relative to the natural 
metric dH in H and We. Indeed, they can increase Hausdorff dimension: an easy example 
is a horizontal line, which is 1-dimensional to begin with, but gets projected to a 2-
dimensional set – a parabola – in almost all directions. For general (sharp) results on 
how much πe can increase Hausdorff dimension, see [1, Theorem 1.3]. We note that the 
vertical planes We themselves are 3-dimensional, and H is 4-dimensional.

Can the vertical projections lower Hausdorff dimension? In some directions they can, 
and the general (sharp) universal lower bound was already found in [1, Theorem 1.3]:

dimH πe(K) ≥ max{0, 1
2 (dimH K − 1), 2 dimH K − 5}, e ∈ S1.

Our main result states that the dimension drop cannot occur in a set of directions of 
positive measure for sets of dimension in [0, 2] ∪ {3}:

Theorem 1.3. Let K ⊂ H be a Borel set with dimH K ∈ [0, 2] ∪{3}. Then dimH πe(K) ≥
dimH K for H1 almost every e ∈ S1.

The result is sharp for all values dimH K ∈ [0, 2] ∪ {3}, and new for dimH K ∈
(1, 2] ∪ {3}. It makes progress in [1, Conjecture 1.5] which proposes that

dimH πe(K) ≥ min{dimH K, 3} (1.4)

for H1 almost every e ∈ S1. The cases dimH K ∈ [0, 1] were established around a decade 
ago by Balogh, Durand-Cartagena, the first author, Mattila, and Tyson [1, Theorem 
1.4]. For dimH K > 1, the strongest previous partial result is due to Harris [14] who in 
2022 proved that

dimH πe(K) ≥ min
{

1 + dimH K

2 , 2
}

for H1 a.e. e ∈ S1.

Other partial results, also higher dimensions, are contained in [2,4,13,15].
The “disconnected” assumption dimH K ∈ [0, 2] ∪ {3} is due to the fact that The-

orem 1.3 is a combination of two separate results, with different proofs. Perhaps sur-
prisingly, the cases dimH K ∈ [0, 2] are a consequence of a “1-dimensional” projection 
theorem. Namely, consider the (nonlinear) projections ρe : R3 → R obtained as the t-
coordinates of the projections πe:

ρe = πT ◦ πe, πT (x, y, t) = (0, 0, t). (1.5)
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Since the t-axis in H is 2-dimensional, it is conceivable that the maps ρe do not a.e. lower 
the Hausdorff dimension of Borel sets of dimension at most 2. This is what we prove:

Theorem 1.6. Let K ⊂ R3 be a Borel set. Then

dimE ρe(K) = min{dimE K, 1} and dimH ρe(K) ≥ min{dimH K, 2}

for H1 almost every e ∈ S1. In fact, the following shaper conclusion holds: for 0 ≤ s <
min{dimH K, 2}, we have dimE{e ∈ S1 : dimH ρe(K) ≤ s} ≤ s

2 .

Theorem 1.6 implies the cases dimH K ∈ [0, 2] of Theorem 1.3, because the map πT

is Lipschitz when restricted to any plane We, thus dimH πe(K) ≥ dimH ρe(K) for all 
e ∈ S1.

The proof of Theorem 1.6 is a fairly straightforward application of recently developed 
technology to study the restricted projections problem in R3 (see [8,9,11,17,22]). Even 
though the maps ρe are nonlinear, Theorem 1.6 falls within the scope of the cinematic 
function framework introduced by Pramanik, Yang, and Zahl [22]. In Theorem 3.2, we 
apply this framework to record a more general version of Theorem 1.6 which simulta-
neously generalises [22, Theorem 1.3] and Theorem 1.6. The details can be found in 
Section 3.

The case dimH K = 3 of Theorem 1.3 is the harder result. This time we do not know 
how to deduce it from a purely Euclidean statement. Instead, it is deduced from the 
following “mixed” result between Heisenberg and Euclidean metrics:

Theorem 1.7. Let K ⊂ H be a Borel set with dimH K ≥ 2. Then,

dimE πe(K) ≥ min{dimHK − 1, 2} (1.8)

for H1 almost every e ∈ S1, and consequently

dimH πe(K) ≥ min{2 dimHK − 3, 3} (1.9)

for H1 almost every e ∈ S1.

Theorem 1.7 will further be deduced from a δ-discretised result which may have in-
dependent interest. We state here a simplified version (the full version is Theorem 5.11):

Theorem 1.10. Let 0 ≤ t ≤ 3 and η > 0. Then, the following holds for δ, ε > 0 small 
enough, depending only on η. Let B be a non-empty (δ, t, δ−ε)-set of Heisenberg balls of 
radius δ, all contained in BH(1). Then, there exists e ∈ S1 such that

Leb(πe(∪B)) ≥ δ3−t+η. (1.11)
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Here Leb denotes Lebesgue measure on We, identified with R2. For the definition of 
(δ, t)-sets of δ-balls, see Definition 5.1. Theorems 1.7 and 1.10 are proved in Sections 5-7.

Remark 1.12. It seems likely that the lower bound (1.11) remains valid under the alter-
native assumptions that |B| = δ−t and

|{B ∈ B : B ⊂ BH(p, r)}| ≤ δ−ε ·
(r
δ

)3
, p ∈ H, r ≥ δ. (1.13)

This is because the estimate (1.11) ultimately follows from Proposition 6.7 which works 
under the non-concentration condition (1.13). We will not need this version of Theo-
rem 1.10, so we omit the details.

1.1. Sharpness of the results

Theorem 1.3 is sharp for all values dimH K ∈ [0, 2] ∪ {3}. The “mixed” inequality 
(1.8) in Theorem 1.7 is sharp for all values dimH K ≥ 2, even though the Heisenberg 
corollary (1.9) is unlikely to be sharp for any value dimH K < 3 (in fact, Theorem 1.3
shows that (1.9) is not sharp for dimH K < 5/2).

The sharpness examples are as follows: if s := dimHK ≤ 2, take an s-dimensional 
subset of the t-axis, and note that the t-axis is preserved by the projections ρe and πe. 
If s > 2, take K to be a union of translates of the t-axis, thus K := K0 × R. The 
πe-projections send vertical lines to vertical lines, so πe(K) is a union of vertical lines 
on We; more precisely πe(K) = π̄e(K0) ×R, where π̄e is an orthogonal projection in R2. 
These observations lead to the sharpness of (1.8), and the sharpness of conjecture (1.4).

Theorem 1.10 is sharp for all values of t ∈ [0, 3]. Indeed, it is possible that |B| = δ−t, 
and then Leb(πe(∪B)) � δ3−t for every e ∈ S1. It also follows from (1.11) that the 
smallest number of dH-balls of radius δ needed to cover πe(∪B) is � δ−t+η. One might 
think that this solves Conjecture 1.4 for all dimH K ∈ [0, 3], but we were not able 
to make this deduction rigorous: the difficulty appears when attempting to δ-discretise 
Conjecture 1.4, and is caused by the non-Lipschitz behaviour of πe : (H, dH) → (We, dH). 
This problem will be apparent in the proof of Theorem 1.7 in Section 7. Another, more 
heuristic, way of understanding the difference between Theorem 1.10 and Conjecture 1.4
is this: Leb(πe(K)) is invariant under left-translating K, but dimH πe(K) is generally 
not.

As we already explained, the proof of Theorem 1.6, therefore the cases dimHK ∈ [0, 2]
of Theorem 1.3, follow from recent developments in the theory of restricted projections
in R3, notably the cinematic function framework in [22]. The proof of Theorem 1.7
does not directly overlap with these results (see Section 1.2 for more details), and for 
example does not use the �2-decoupling theorem, in contrast with [8,9,11]. That said, the 
argument was certainly inspired by the recent developments in the restricted projection 
problem.
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1.2. Proof outline for Theorem 1.7

The proof of Theorem 1.7 is mainly based on two ingredients. The first one is a point-
line duality principle between horizontal lines in H, and R3. To describe this principle, 
let LH be the family of all horizontal lines in H, and let LC be the family of all lines 
in R3 which are parallel to some line contained in a conical surface C. In Section 4, we 
show that there exist maps � : R3 → LH and �∗ : H → LC (whose ranges cover almost all 
of LH and LC) which preserve incidence relations in the following way:

q ∈ �(p) ⇐⇒ p ∈ �∗(q), p ∈ R3, q ∈ H.

Thus, informally speaking, incidence-geometric questions between points in H and lines 
in LH can always be transformed into incidence-geometric questions between points in 
R3 and lines in LC. The point-line duality principle described here was used implicitly 
by Liu [18] to study Kakeya sets (formed by horizontal lines) in H. However, making 
the principle explicit has already proved very useful since the first version of this paper 
appeared: we used it in [5] to study Kakeya sets associated with SL(2)-lines in R3, 
and Harris [12] used it to treat the case dimHK > 3 of Theorem 1.3 (in this case the 
projections πe(K) turn out to have positive measure almost surely).

The question about vertical projections in H can – after suitable discretisation – be 
interpreted as an incidence geometric problem between points in H and lines in LH. It 
can therefore be transformed into an incidence-geometric problem between points in R3

and lines in LC . Which problem is this? It turns out that while the dual �∗(p) of a point 
p ∈ H is a line in LC , the dual �∗(BH) of a Heisenberg δ-ball resembles an δ-plate in R3

– a rectangle of dimensions 1 × δ× δ2 tangent to C. So, the task of proving Theorem 1.10
(hence Theorem 1.7) is (roughly) equivalent to the task of solving an incidence-geometric 
problem between points in R3, and family of δ-plates.

Moreover: the plates in our problem appear as duals of certain Heisenberg δ-balls, 
approximating a t-dimensional set K ⊂ H, with 0 ≤ t ≤ 3. Consequently, the plates 
can be assumed to satisfy a t-dimensional “non-concentration condition” relative to the 
metric dH. In common jargon, the plate family is a (δ, t)-set relative to dH.

In [10], Guth, Wang, and Zhang proved the sharp (reverse) square function estimate 
for the cone in R3. A key component in their proof was a new incidence-geometric 
(“Kakeya”) estimate [10, Lemma 1.4] for points and δ-plates in R3 (see Section 6 for the 
details). While this was not relevant in [10], it turns out that the incidence estimate in 
[10, Lemma 1.4] interacts perfectly with a (δ, 3)-set condition relative to dH. This allows 
us to prove, roughly speaking, that the vertical projections of 3-Frostman measures on 
H have L2-densities. See Corollary 5.6 for a more precise statement.

For 0 ≤ t < 3, the (δ, t)-set condition relative to dH no longer interacts so well with 
[10, Lemma 1.4]. However, we were able to (roughly speaking) reduce Theorem 1.10 for 
(δ, t)-sets, 0 ≤ t ≤ 3, to the special case t = 3. This argument is explained in Section 5, 
so we omit the discussion here.
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2. Preliminaries on the Heisenberg group

We briefly introduce the Heisenberg group and relevant related concepts. A more 
thorough introduction to the geometry of the Heisenberg group can be found in many 
places, for instance in the monograph [3].

The Heisenberg group H = (R3, ·) is the set R3 equipped with the non-commutative 
group product defined by

(x, y, t) · (x′, y′, t′) =
(
x + x′, y + y′, t + t′ + 1

2 (xy′ − yx′)
)
.

The Heisenberg dilations are the group automorphisms δλ, λ > 0, defined by

δλ(x, y, t) = (λx, λy, λ2t).

The group product gives rise to projection-type mappings onto subgroups that are in-
variant under Heisenberg dilations. For e ∈ S1, we define the horizontal subgroup

Le := {(se, 0) : s ∈ R}.

The vertical subgroup We is the Euclidean orthogonal complement of Le in R3; in par-
ticular it is a plane containing the vertical axis. Every point p ∈ H can be written in 
a unique way as a product p = pWe

· pLe
with pWe

∈ We and pLe
∈ Le. The vertical 

Heisenberg projection onto the vertical plane We is the map

πe : H → We, p = pWe
· pLe

�→ pWe
.

The vertical projection to the xt-plane {(x, 0, t) : x, t ∈ R} will play a special role; this 
projection will be denoted πxt, and it has the explicit formula stated in (1.1). Preliminar-
ies about Heisenberg projections can be found for instance in [21,2,1]. These mappings 
have turned out to play an important role in geometric measure theory of the Heisen-
berg group endowed with a left-invariant non-Euclidean metric. The Korányi metric dH
is defined by

dH(p, q) := ‖q−1 · p‖,

where ‖ · ‖ is the Korányi norm given by

‖(x, y, t)‖ = 4
√

(x2 + y2)2 + 16t2.
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We will use the symbol BH(p, r) to denote the ball centered at p with radius r with respect 
to the Korányi metric. Balls centred at the origin are denoted BH(r). All vertical planes 
We, e ∈ S1, equipped with dH are isometric to each other via rotations of R3 about the 
vertical axis. The Heisenberg dilations are similarities with respect to dH, and it is easy 
to see that (H, dH) is a 4-regular space, while the vertical subgroups We are 3-regular 
with respect to dH. Moreover, there exists a constant 0 < c < ∞, independent of e, such 
that under the obvious identification of We with R2, the restriction of the 3-dimensional 
Hausdorff measure H3 to We agrees with the 2-dimensional Lebesgue measure Leb on 
R2 up to the multiplicative constant c.

Vertical projections are neither group homomorphisms nor Lipschitz mappings with 
respect dH. However, they behave well with respect to the Lebesgue measure on vertical 
planes. Namely, for every Borel set E ⊂ H, we have that

Leb (πe(p · E)) = Leb (πe(E)) , p ∈ R3, e ∈ S1, (2.1)

see the formula at the bottom of page 1970 in the proof of [7, Lemma 2.20].

3. Proof of Theorem 1.6

In this section, we prove Theorem 1.6, and therefore the cases dimH K ∈ [0, 2] of 
Theorem 1.3. Further, Theorem 1.6 will be inferred from a more general statement, 
Theorem 3.2, modelled after [22, Theorem 1.3]. We first discuss Theorem 3.2, and then 
explain in Section 3.2 how it can be applied to deduce Theorem 1.6.

3.1. Projections induced by cinematic functions

We start by introducing terminology from [22, Definition 1.6] which will be needed 
for the formulation of Theorem 3.2.

Definition 3.1 (Cinematic family). Let I ⊂ R be a compact interval, and let F ⊂ C2(I)
be a family of functions satisfying the following conditions:

(1) I is a compact interval, and F has finite diameter in (C2(I), ‖ · ‖C2(I)).
(2) (F , ‖ · ‖C2(I)) is a doubling metric space.
(3) For all f, g ∈ F , we have

inf
θ∈I

|f(θ) − g(θ)| + |f ′(θ) − g′(θ)| + |f ′′(θ) − g′′(θ)| � ‖f − g‖C2(I).

Then, F is called a cinematic family.

The following projection theorem is modelled after [22, Theorem 1.3]:
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Theorem 3.2. Let L > 0, let I ⊂ R be a compact interval, and let {ρθ}θ∈I be a family of 
L-Lipschitz maps ρθ : B → R, where B ⊂ R3 is a ball. For p ∈ B, define the function 
fp : I → R by fp(θ) := ρθ(p). Assume that p �→ fp is a bilipschitz embedding B → C2(I), 
and assume that F = {fp : p ∈ B} is a cinematic family.

Then, the projections {ρθ}θ∈I satisfy (3.8): if K ⊂ R3 is a Borel set, then

dimE{θ ∈ I : dimE ρθ(K) ≤ s} ≤ s, 0 ≤ s < min{dimE K, 1}.

We only sketch the proof of Theorem 3.2 since it is virtually the same as the proof of 
[22, Theorem 1.3]: this is the special case of Theorem 3.2, where

fp(θ) = ρθ(p) := γ(θ) · p, p ∈ R3, (3.3)

and γ : I → S2 parametrises a curve on S2 satisfying span{γ, γ̇, ̈γ} = R3 (this condition 
is needed to guarantee that the family {fp : p ∈ B} is cinematic for every ball B ⊂ R3, 
see the proof of [22, Proposition 2.1]).

The proof of [22, Theorem 1.3] is based on a reduction to [22, Theorem 1.7]. This is a 
“Kakeya-type” estimate concerning δ-neighbourhoods of graphs of cinematic functions. 
More precisely, [22, Theorem 1.7] is only used via [22, Proposition 2.1], a special case of 
[22, Theorem 1.7] concerning the cinematic family {θ �→ γ(θ) ·p}p∈B. We formulate a more 
general version of this proposition below: the only difference is that the cinematic family 
{θ �→ γ(θ) · p}p∈B is replaced by the family {θ �→ ρθ(p)}p∈B relevant for Theorem 3.2:

Proposition 3.4. Fix ε > 0 and 0 < α ≤ ζ ≤ 1. Let I ⊂ R be a compact interval, let 
B ⊂ R3 be a ball, and let ρθ : B → R be a family of uniformly Lipschitz functions with 
the properties assumed in Theorem 3.2: thus, F = {fp : p ∈ B} is a cinematic family, 
and the map p �→ fp is a bilipschitz embedding B → C2(I), where fp(θ) := ρθ(p). Then 
there exists δ0 > 0 such that the following holds for all δ ∈ (0, δ0]:

Let E ⊂ R2 be a (δ, α; δ−ε)1 × (δ, α; δ−ε)1 quasi-product. Let Zδ ⊂ B be a δ-separated 
set that satisfies

|Zδ ∩B(p, r)| ≤ δ−ε(r/δ)ζ , p ∈ R3, r ≥ δ. (3.5)

Then
ˆ

E

( ∑
p∈Zδ

1Γδ
p

)3/2
≤ δ2−α/2−ζ/2−Cε|Zδ|,

where C > 0 is absolute, and Γδ
p is the δ-neighbourhood of the graph of fp.

Proof. The proof of [22, Proposition 2.1] is easy (given [22, Theorem 1.7]), but the 
proof of Proposition 3.4 is almost trivial. Indeed, the first part in the proof of [22, 
Proposition 2.1] is to verify that the family {θ �→ ρθ(p)}p∈B is cinematic in the case 
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ρθ(p) = γ(θ) ·p, but this is already a part of our hypothesis. The second part in the proof 
of [22, Proposition 2.1] is to verify that p �→ fp is a bilipschitz embedding B → C2(I), 
and this is – again – part of our hypothesis. In other words, all the work in the proof of 
[22, Proposition 2.1] has been made part of the hypotheses of Proposition 3.4. �

The reduction from [22, Theorem 1.3] to [22, Proposition 2.1] (in our case from The-
orem 3.2 to Proposition 3.4) is presented in [22, Sections 2.1-2.4], and does not use the 
special form (3.3) (for example the linearity) of the maps ρθ : R3 → R: it is only needed 
that

(1) the maps ρθ are uniformly Lipschitz, for θ ∈ I,
(2) supp∈B supθ∈I |∂θρθ(p)| < ∞.

Property (1) is assumed in Theorem 3.2, whereas property (2) follows from the assump-
tion that the family F is cinematic (and in particular a bounded subset of C2(I)).

The argument in [22, Sections 2.1-2.4] is extremely well-written, and our notation is 
deliberately the same, so we will not copy the whole proof. We only make a few remarks, 
below. If the reader is unfamiliar with the ideas involved, we warmly recommend reading 
first the heuristic section [22, Section 1.2].

Proof sketch of Theorem 3.2. The argument in [22, Section 2.1] can be copied verbatim; 
nothing changes. The most substantial change occurs in [22, Section 2.2]. Namely, [22, 
(2.10)] uses the fact (true in [22]) that the ρθ-image of a δ-cube Q ⊂ R3 has length 
|ρθ(Q)| � δ. For the general Lipschitz maps ρθ in Theorem 3.2 this may not be the case; 
it would be true for the special maps ρθ needed in Theorem 3.7, so also this part of [22]
would work verbatim for these maps. However, even in the generality of Theorem 3.2
the problem can be completely removed: one only needs to replace every occurrence of 
ρθ(Q) in [22, Section 2.2] by an interval

Iθ(Q) := [ρθ(zQ) − δ, ρθ(zQ) + δ]

of length ∼ δ centred at ρθ(zQ), where zQ ∈ Q is the centre of Q. Since ρθ(Q) only 
appears as a “tool” in [22, Section 2.2], the rest of the argument will remain unchanged. 
Let us, however, discuss what changes in [22, Section 2.2] when ρθ(Q) is replaced by 
Iθ(Q). We assume familiarity with the notation in [22].

First and foremost, [22, (2.9)] remains valid: whenever Q ∈ Q is a cube that intersects 
ρ−1
θ (Gθ), then dist(ρθ(zQ), Gθ) � Lδ by our assumption that the maps ρθ are L-Lipschitz. 

Therefore,

Iθ(Q) ⊂ G′
θ := NLδ(Gθ).

This gives [22, (2.9)] with the slightly modified definition of G′
θ, stated above. Conse-

quently, also the version of [22, (2.10)] is true where ρθ(Q) is replaced by Iθ(Q): here 
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the length bound |Iδ(Q)| � δ is used. Finally, to deduce [22, (2.13)] from [22, (2.10)], we 
need to know that [22, (2.12)] remains valid when ρθ(Q) is replaced with Iθ(Q). This is 
clear: if y ∈ Iθ(Q), then |y− ρθ(zQ)| ≤ δ by definition, and therefore (θ, y) ∈ Γδ

zQ , where

Γz = {(θ, ρθ(z)) : θ ∈ I}, z ∈ B,

is the analogue of [22, (1.12)], and Γδ
z is the δ-neighbourhood of Γz. We have now verified 

[22, (2.13)]. The intervals ρθ(Q) or Iθ(Q) play no further role in the proof. The rest of 
[22, Section 2.2] works verbatim.

The same is also true for [22, Section 2.3]: the argument is fairly abstract down 
to [22, (2.19)], where it is needed that supp∈B supθ∈I |∂θρθ(p)| < ∞. The maps ρθ in 
Theorem 3.2 satisfy this property automatically, as noted in (2) above.

Finally, we arrive at the short [22, Section 2.4]. The only difference is that we need 
to apply Proposition 3.4 in place of [22, Proposition 2.1]. This completes the proof of 
Theorem 3.2. �
3.2. From vertical projections to cinematic functions

We explain how the general projection result, Theorem 3.2, can be applied to prove 
Theorem 3.7, which concerns the special projections ρe = πT ◦ πe. Recall that πe is 
the vertical projection to the plane We = e⊥. For e = (e1, e2) ∈ S1, we write J(e) :=
(−e2, e1) ∈ S1 ∩ e⊥ is the counterclockwise rotation of e by π/2. With this notation, the 
map πe has the explicit formula

πe(z, t) = (〈z, Je〉, t + 1
2 〈z, e〉〈z, Je〉), (3.6)

where 〈·, ·〉 is the Euclidean dot product in R2. In the formula (3.6), we have also identified 
each plane We with R2 via the map (yJe, t) ∼= (y, t). It is worth noting that the distance 
dH restricted to the plane We (for e ∈ S1 fixed) is bilipschitz equivalent to the parabolic 
distance on R2, namely dpar((x, s), (y, t)) = |x − y| +

√
|s− t|.

With the explicit expression (3.6) in hand, the nonlinear projections ρe = πT ◦ πe

introduced in (1.5) have the following formula:

ρe(z, t) = t + 1
2 〈z, e〉〈z, Je〉, (z, t) ∈ R2 ×R, e ∈ S1,

By a slight abuse of notation, we write “dH” for the square root metric on R: thus 
dH(s, t) :=

√
s− t. The projection πT restricted to any fixed plane We is a Lipschitz 

map (We, dH) → (R, dH), even though πT is not “globally” a Lipschitz map (H, dH) →
(R, dH). Therefore dimH πe(K) ≥ dimH ρe(K) for all e ∈ S1, and the cases dimH K ∈
[0, 2] of Theorem 1.3 follow from Theorem 1.6, whose contents are repeated here:

Theorem 3.7. Let K ⊂ R3 be Borel, and let 0 ≤ s < min{dimE K, 1}. Then,

dimE{e ∈ S1 : dimE ρe(K) ≤ s} ≤ s. (3.8)
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As a consequence, for every 0 ≤ s < min{dimH K, 2},

dimE{e ∈ S1 : dimH ρe(K) ≤ s} ≤ s
2 . (3.9)

In particular, dimH ρe(K) ≥ min{dimH K, 2} for H1 almost every e ∈ S1.

Remark 3.10. We explain why (3.8) implies (3.9). It is well-known that

dimHK ≤ 2 dimE K.

for all sets K ⊂ H. This simply follows from the fact that the identity map (H, dEuc) →
(H, dH) is locally 1

2 -Hölder continuous. Therefore, if 0 ≤ s < min{dimHK, 2}, as in 
(3.9), we have 0 ≤ s

2 < min{dimE K, 1}, and (3.8) is applicable. Since

{e ∈ S1 : dimH ρe(K) ≤ s} = {e ∈ S1 : dimE ρe(K) ≤ s
2}

(the square root metric on R doubles Euclidean dimension), we have

dimE{e ∈ S1 : dimH ρe(K) ≤ s} = dimE{e ∈ S1 : dimE ρe(K) ≤ s
2}

(3.8)
≤ s

2 .

This is what we claimed in (3.9).

For the remainder of this section, we focus on proving the Euclidean statement (3.8). 
This is chiefly based on verifying that the projections ρe : R3 → R give rise to a cinematic 
family of functions, as in Definition 3.1. Let us introduce the relevant cinematic family. 
We re-parametrise the projections ρe, e ∈ S1, as ρθ, θ ∈ R, where

ρθ := ρe(θ), e(θ) := (cos θ, sin θ).

With this notation, we define the following functions fp : R → R, p ∈ R3:

fp(θ) := ρθ(p) := t + 1
2〈z, e(θ)〉〈z, Je(θ)〉, p = (z, t) ∈ R3. (3.11)

Proposition 3.12. Let p0 ∈ R3 \ {(0, 0, t) : t ∈ R}. Then, there exists a radius r = r(p0) >
0 such that F(B(p0, r)) := {fp : p ∈ B(p0, r)} is a cinematic family.

The compact interval appearing in conditions (1)-(3) of Definition 3.1 can be taken 
to be [0, 2π] – this makes no difference, since the functions fp are 2π-periodic. It turns 
out that the conditions (1)-(2) are satisfied for the family F(B), whenever B ⊂ R3 is 
an arbitrary ball. To verify condition (3), we will need to assume that B lies outside 
the t-axis; we will return to this a little later. We first compute the derivatives of the 
functions in F . For fp ∈ F , we have
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f ′
p(θ) = 1

2 〈z, e
′(θ)〉〈z, Je(θ)〉 + 1

2〈z, e(θ)〉〈z, Je
′(θ)〉.

This expression can be further simplified by noting that e′(θ) = Je(θ), and Je′(θ) =
−e(θ). Therefore,

f ′
p(θ) = 1

2〈z, Je(θ)〉
2 − 1

2 〈z, e(θ)〉
2. (3.13)

From this expression, we may compute the second derivative:

f ′′
p (θ) = 〈z, Je(θ)〉〈z, Je′(θ)〉 − 〈z, e(θ)〉〈z, e′(θ)〉 = −2〈z, e(θ)〉〈z, Je(θ)〉. (3.14)

The formulae (3.11)-(3.14) immediately show that the map p �→ fp is locally Lipschitz:

sup
θ∈R

|fp(θ) − fq(θ)| + |f ′
p(θ) − f ′

q(θ)| + |f ′′
p (θ) − f ′′

q (θ)| �B |p− q|, p, q ∈ B. (3.15)

This implies conditions (1)-(2) in Definition 3.1 for the family F(B). Regarding condition 
(3) in Definition 3.1, we claim the following:

Proposition 3.16. If p0 ∈ R3 \ {(0, 0, t) : t ∈ R}, there exists a radius r = r(p0) > 0 and 
a constant c = c(p0) > 0 such that

|fp(θ) − fq(θ)| + |f ′
p(θ) − f ′

q(θ)| + |f ′′
p (θ) − f ′′

q (θ)| ≥ c|p− q| (3.17)

for all p, q ∈ B(p0, r) and θ ∈ R.

We start with the following lemma:

Lemma 3.18. For every p0 ∈ R3 \ {(0, 0, t) : t ∈ R} there exists a constant c > 0 and a 
radius r > 0 such that the following holds:

|fp(0) − fq(0)| + |f ′
p(0) − f ′

q(0)| + |f ′′
p (0) − f ′′

q (0)| ≥ c|p− q|, p, q ∈ B(p0, r). (3.19)

Proof. Recall that e(0) = (1, 0) and Je(0) = (0, 1). We then define F : R3 → R3 by

F (p) := (fp(0), f ′
p(0), f ′′

p (0)) = (t + 1
2z1z2,

1
2 (z2

2 − z2
1),−2z1z2), p = (z, t) ∈ R3.

Then, we note that |detDF (p)| = 2|z|2, so in particular the Jacobian of F is non-
vanishing outside the t-axis. Now (3.19) follows from the inverse function theorem. �

We then prove Proposition 3.16:

Proof of Proposition 3.16. To deduce (3.17) from (3.19), we record the following rotation 
invariance:
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f
(k)
Rϕ(p)(θ + ϕ) = f (k)

p (θ), p ∈ R3, θ, ϕ ∈ R. (3.20)

Here Rϕ(z, t) := (eiϕz, t) is a counterclockwise rotation around the t-axis. The proof is 
evident from the formulae (3.11)-(3.14), and noting that

〈eiϕz, e(θ + ϕ)〉 = 〈z, e(θ)〉 and 〈eiϕz, Je(θ + ϕ)〉 = 〈z, Je(θ)〉.

Now we are in a position to conclude the proof of (3.17). Fix p0 ∈ R3 \ {(0, 0, t) : t ∈ R}
and θ0 ∈ R. Then, apply Lemma 3.18 to the point

R−θ0(p0) ∈ R3 \ {(0, 0, t) : t ∈ R}.

This yields a constant c = c(p0, θ0) > 0 and a radius r0 = r0(p0, θ0) > 0 such that

|fp(0) − fq(0)| + |f ′
p(0) − f ′

q(0)| + |f ′′
p (0) − f ′′

q (0)| ≥ c|p− q| (3.21)

for all p, q ∈ B(R−θ0(p0), 2r0). Next, we choose I(θ0) = [θ0−r1, θ0+r1] to be a sufficiently 
short interval around θ0 such that the following holds:

R−θ(p), R−θ(q) ∈ B(R−θ0(p0), 2r0), p, q ∈ B(p0, r0), θ ∈ I(θ0).

Then, it follows from a combination of (3.20) and (3.21) that

2∑
k=0

|f (k)
p (θ)−f (k)

q (θ)| (3.20)=
2∑

k=0

|f (k)
R−θ(p)(0)−f

(k)
R−θ(q)(0)|

(3.21)
≥ c|R−θ(p)−R−θ(q)| = c|p−q|

for all p, q ∈ B(p0, r0) and all θ ∈ I(θ0). This completes the proof of (3.17) of all 
θ ∈ I(θ0). To extend the argument of all θ ∈ R, note that the functions fp, and all of 
their derivatives, are 2π-periodic. So, it suffices to show that (3.17) holds for θ ∈ [0, 2π]. 
This follows by compactness from what we have already proven, by covering [0, 2π] by 
finitely many intervals of the form I(θ0), and finally defining “r” and “c” to be the 
minima of the constants r(p0, θ0) and c(p0, θ0) obtained in the process. �

Proposition 3.12 now follows from Proposition 3.16, and the discussion above it (where 
we verified Definition 3.1(1)-(2)). We then conclude the proof of Theorem 3.7:

Proof of Theorem 3.7. Given Remark 3.10, it suffices to prove (3.8), which will be a 
consequence of Theorem 3.2. Indeed, since the projections ρe are isometries on the t-
axis, we may assume that

dimE(K \ {(0, 0, t) : t ∈ R}) = dimE K.

Consequently, for ε > 0, we may fix a point p0 ∈ K outside the t-axis such that



K. Fässler, T. Orponen / Advances in Mathematics 431 (2023) 109248 15
dimE(K ∩B(p0, r)) > dimE K − ε, r > 0. (3.22)

Apply Proposition 3.12 to find a radius r > 0 such that the family of functions F :=
F(B(p0, r)) is cinematic. It follows from a combination of (3.15) and Proposition 3.16
that p �→ fp is a bilipschitz embedding B → C2(R). Therefore Theorem 3.2 is applicable: 
for every 0 ≤ s < min{dimE(K ∩B(p0, r)), 1} we have

dimE{θ ∈ [0, 2π] : dimE ρθ(K ∩B(p0, r)) ≤ s} ≤ s.

Now (3.8) follows from (3.22) by letting ε → 0. �
4. Duality between horizontal lines and R3

This section contains preliminaries to prove Theorem 1.7. Most importantly, we in-
troduce a notion of duality that associates to points and horizontal lines in H certain 
lines and points in R3. The lines in R3 will be light rays – translates of lines on a fixed 
conical surface. To define these, we let C0 be the vertical cone

C0 = {(z1, z2, z3) ∈ R3 : z2
1 + z2

2 = z2
3},

and we denote by C the (45◦) rotated cone

C = R(C0) = {(z1, z2, z3) ∈ R3 : z2
2 = 2z1z3},

where R(z1, z2, z3) =
(
(z1 + z3)/

√
2, z2, (−z1 + z3)/

√
2
)
. The cone C is foliated by lines

Ly = spanR(1,−y, y2/2), y ∈ R, (4.1)

cf. the proof of [18, Theorem 1.2], where a similar parametrization is used. To be accurate, 
the lines Ly only foliate C \ {(0, 0, z) : z ∈ R}. We will abuse notation by writing 
Ly(s) = (s, −sy, sy2/2) for the parametrisation of the line Ly.

Definition 4.2 (Light rays). We say that a line L in R3 is a light ray if L = z + Ly for 
some z ∈ R3 and y ∈ R. In other words, L is a (Euclidean) translate of a line contained 
in C (excluding the t-axis).

Remark 4.3. Every light ray can be written as (0, u, v) + Ly for a unique (u, v) ∈ R2.

Definition 4.4 (Horizontal lines). A line � in R3 is horizontal if it is a Heisenberg left 
translate of a horizontal subgroup, that is, there exists p ∈ H and e ∈ S1 such that 
� = p · Le.

Remark 4.5. Every horizontal line, apart from left translates of the x-axis, can be written 
as � = {(as + b, s, (b/2)s + c) : s ∈ R} for a uniquely determined point (a, b, c) ∈ R3.
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Definition 4.6. We define the following correspondence between points and lines:

• To a point p = (x, y, t) ∈ H, we associate the light ray

�∗(p) = (0, x, t− xy/2) + Ly ⊂ (0, x, t− xy/2) + C ⊂ R3. (4.7)

(This formula will be motivated by Lemma 4.11 below.)
• To a point p∗ = (a, b, c) ∈ R3, we associate the horizontal line

�(p∗) = {(as + b, s, b
2s + c) : s ∈ R}.

Given a set P of points in H, we define the family of light rays

�∗(P) =
⋃
p∈P

�∗(p). (4.8)

Remark 4.9. It is worth observing that the point (0, x, t − xy/2) appearing in formula 
(4.7) is nearly the vertical projection of (x, y, t) to the xt-plane; the actual formula for 
this projection would be πxt(x, y, t) = (x, 0, t − xy/2). It follows from this observation 
that

�∗((u, 0, v) · (0, y, 0)) = (0, u, v) + Ly, u, v, y ∈ R, (4.10)

because πxt((u, 0, v) · (0, y, 0)) = (u, 0, v).

Under the point-line correspondence in Definition 4.6, incidences between points and 
horizontal lines in H are in one-to-one correspondence with incidences between light rays 
and points in R3.

Lemma 4.11 (Incidences are preserved under duality). For p ∈ H and p∗ ∈ R3, we have

p ∈ �(p∗) ⇐⇒ p∗ ∈ �∗(p).

Proof. Let p = (x, y, t) ∈ H and p∗ = (a, b, c) ∈ R3. The condition p ∈ �(p∗) is equivalent 
to {

ay + b = x
b
2y + c = t.

Recalling the notation Ly(s) = (s, −sy, sy2/2), this is further equivalent to

p∗ = (a, b, c) = (0, x, t− xy/2) + Ly(a). (4.12)

Finally, (4.12) is equivalent to p∗ ∈ �∗(p). �
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4.1. Measures on the space of horizontal lines

The duality p �→ �(p) between points in p ∈ R3 and horizontal lines �(p) in Def-
inition 4.6 allows one to push-forward Lebesgue measure “Leb” on R3 to construct a 
measure “m” on the set of horizontal lines:

m(L) := (�
Leb)(L) = Leb({p ∈ R3 : �(p) ∈ L}).

There is, however, a more commonly used measure on the space of horizontal lines. This 
measure “h” is discussed extensively for example in [6, Section 2.3]. The measure h is 
the unique (up to a multiplicative constant) non-zero left invariant measure on the set 
of horizontal lines. One possible formula for it is the following:

h(L) =
ˆ

S1

H3({w ∈ We : π−1
e {w} ∈ L}) dH1(e). (4.13)

Let f ∈ L1(H), and consider the weighted measure μf := f dLeb. Then, starting from 
the definition (4.13), it is easy to check that

ˆ

S1

‖πeμf‖2
L2 dH1(e) =

ˆ
Xf(�)2 dh(�), (4.14)

where Xf(�) :=
´
�
f dH1.

While the measure h is mutually absolutely continuous with respect to m, the Radon-
Nikodym derivative is not bounded (from above and below): with our current notational 
conventions, the lines �(p) are never parallel to the x-axis, and the m-density of lines 
making a small angle with the x-axis is smaller than their h-density. The problem can be 
removed by restricting our considerations to lines which make a substantial angle with 
the x-axis. For example, let L∠ be the set of horizontal lines which have slope at most 
1 relative to the y-axis; thus

L∠ = �({(a, b, c) ∈ R3 : |a| ≤ 1}).

Then, m(L) ∼ h(L) for all Borel sets L ⊂ L∠. The lines in L∠ coincide with pre-images 
of the form π−1

e {w}, e ∈ S ⊂ S1, where S consists of those vectors making an angle at 
most 45◦ with the y-axis. Now, (4.14) also holds in the following restricted form:

ˆ

S

‖πeμf‖2
L2dH1(e) =

ˆ

L∠

Xf(�)2 dh(�) ∼
ˆ

L∠

Xf(�)2 dm(�). (4.15)

This equation will be useful in establishing Theorem 5.2. This will, formally, only prove 
Theorem 5.2 with “S” in place of “S1”, but the original version is easy to deduce from 
this apparently weaker version.
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4.2. Ball-plate duality

Recall from (4.8) the definition of the (dual) line set �∗(P ) for P ⊂ H. What does 
�∗(BH(p, r)) look like? The answer is: a plate tangent to the cone C. Informally speaking, 
for r ∈ (0, 12 ], an r-plate tangent to C is a rectangle of dimensions ∼ (1 × r × r2) whose 
long side is parallel to a light ray, and whose orientation is such that the plate is roughly 
tangent to C, see Fig. 1. To prove rigorously that �∗(BH(p, r)) looks like such a plate 
(inside B(1)), we need to be more precise with the definitions.

Recall that the cone C is a rotation of the “standard” cone C0 = {(x, y, z) : z2 =
x2 + y2}.

Fig. 1. The cone C, the parabola P , and three r-plates.

The intersection of C with the plane {x = 1} is the parabola

P = {(1,−y, y2/2) : y ∈ R}.

For every r ∈ (0, 12 ] and p ∈ P , choose a rectangle R = Rr(p) of dimensions r× r2 in the 
plane {x = 1}, centred at p, such that the longer r-side is parallel to the tangent line of 
P at p. Then P ∩B(0, cr) ⊂ R for an absolute constant c > 0. Now, the r-plate centred 
at p is the set obtained by sliding the rectangle R along the light ray containing p inside 
{|x| ≤ 1}, see Fig. 1. We make this even more formal in the next definition.

Definition 4.16 (r-plate). Let r ∈ (0, 12 ], and let p = (1, −y, y2/2) ∈ P ⊂ C with y ∈
[−1, 1]. Let Rr(0) := [−r, r] × [−r2, r2], and define Rr(y) := My(Rr(0)) ⊂ R2, where

My =
(

1 0
−y 1

)
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(The rectangle Rr(y) is the intersection of an r-plate with the plane {x = 0}.) Define

Pr(p) := {(0, �r) + Ly([−1, 1]) : �r ∈ Rr(y)},

The set Pr(p) is called the r-plate centred at p ∈ P . In general, an r-plate is any translate 
of one of the sets Pr(p), for p = (1, −y, y2/2) with y ∈ [−1, 1], and r ∈ (0, 12 ].

For the r-plate Pr(p), we also commonly use the notation Pr(y), where p =
(1, −y, y2/2).

Remark 4.17. Since we require y ∈ [−1, 1] in Definition 4.16, it is clear that an r-plate 
contains, and is contained in, a rectangle of dimensions ∼ (1 × r × r2). It is instructive 
to note that the number of “essentially distinct” r-plates intersecting B(0, 1) is roughly 
r−4: to see this, take a maximal r-separated subset of Pr ⊂ P , and note that for each 
p ∈ Pr, the plate Pr(p) has volume r3. Therefore it takes ∼ r−3 translates of Pr(p)
to cover B(0, 1). This r−4-numerology already suggests that the various r-plates might 
correspond to Heisenberg r-balls via duality.

To relate the plates Pr to Heisenberg balls, we define a slight modification of the plates 
Pr. Whereas Pr is a union of (truncated) light rays in one fixed direction, the following 
“modified” plates contain full light rays in an r-arc of directions. These “modified” plates 
will finally match the duals of Heisenberg balls, see Proposition 4.22.

Definition 4.18 (Modified r-plate). Let r ∈ (0, 12 ] and y ∈ [−1, 1]. Let Rr(y0) ⊂ R2 be 
the rectangle from Definition 4.16. For (u, v) ∈ R2, define the modified r-plate

Πr(u, v, y) := (0, u, v) + {(0, �r) + Ly′ : �r ∈ Rr(y) and |y′ − y| ≤ r}. (4.19)

Remark 4.20. The relation between the sets Pr and Πr is that the following holds for 
some absolute constant c > 0: if r ∈ (0, 12 ], y ∈ [−1, 1], and u, v ∈ R, then

Πcr(u, v, y) ∩ {(s, y, z) : |s| ≤ 2} ⊂ (0, u, v) + Pr(y) ⊂ Πr(u, v, y). (4.21)

(The constant “2” is arbitrary, but happens to be the one we need.) To see this, it suffices 
to check the case u = 0 = v. Consider the “slices” of Πr(0, 0, y) and Pr(y) with a fixed 
plane {x = s} for |s| ≤ 1. If s = 0, both slices coincide with the rectangle Ry(y). If 
0 < |s| ≤ 1, the slice Πr(0, 0, y) ∩ {x = s} can be written as a sum

Πr(0, 0, y) ∩ {x = s} = Rr(y) + {Ly′(s) : |y − y′| ≤ r},

whereas Pr(y) ∩{x = s} = Rr(y) +{Ly(s)}. The relationship between these two slices is 
depicted in Fig. 2. After this, we leave it to the reader to verify that Πcr(0, 0, y) ∩ {x =
s} ⊂ Pr(y) ∩ {x = s} if c > 0 is sufficiently small, and for |s| ≤ 2.
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Fig. 2. The red box is the slice Pr(y) ∩{x = s}. The slice Πr(0, 0, y) ∩{x = s} is a union of the yellow boxes 
centred along the black curve {Ly′ (s) : |y′ − y| ≤ r}. All the boxes individually are translates of Rr(y).

We record the following consequence of (4.21): Πr(u, v, y) ∩ {(s, y, z) : |s| ≤ 1} is 
contained in a tube of width r around the line (0, u, v) + Ly. This is because Pr(y) is 
obviously contained in a tube of width ∼ r around Ly (this is a very non-sharp statement, 
using only that the longer side of Ry(r) has length r.)

We then show that the �∗-duals of Heisenberg balls are essentially modified plates:

Proposition 4.22. Let p = (u0, 0, v0) · (0, y0, 0), r ∈ (0, 12 ], and B := BH(p, r). Then,

�∗(B) ⊂ Π2r(u0, v0, y0) ⊂ �∗(CB), (4.23)

where C > 0 is an absolute constant, and CB = BH(p, Cr).

Remark 4.24. To build a geometric intuition, it will be helpful to notice the following. 
The y-coordinate of the point p = (u0, 0, v0) · (0, y0, 0) = (u0, y0, v0 + 1

2u0y0) is “y0”. On 
the other hand, while the modified plate Π2r(u0, v0, y0) contains many lines, they are 
all “close” to the “central” line (0, u0, v0) + Ly0 (see Definition 4.19). According to the 
inclusions in (4.23), this means that the “direction” Ly0 of the modified plate containing 
the dual �∗(B(p, r)) is determined by the y-coordinate of p. Even less formally: Heisenberg 
balls whose centres have the same y-coordinate are dual to parallel plates.

Proof of Proposition 4.22. To prove the inclusion �∗(B) ⊂ Π2r(u0, v0, y0), let q ∈
BH(p, r), and write q := (u, 0, v) · (0, y, 0) with (u, v) ∈ R2 and y ∈ R. First, we note 
that

|y − y0| ≤ dH(p, q) ≤ r. (4.25)

Let πxt be the vertical projection to the xt-plane {(u′, 0, v′) : u′, v′ ∈ R}. Then 
(u, 0, v) = πxt(q) ∈ πxt(B) by the definition of πxt. We now observe that B =
(u0, 0, v0) ·BH((0, y0, 0), r), so

πxt(B) = (u0, 0, v0) + πxt(BH((0, y0, 0), r)).

We claim that
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πxt(BH((0, y0, 0), r)) ⊂ {(u′, 0, v′) : (u′, v′) ∈ R2r(y0)}. (4.26)

This will prove that

(u, 0, v) ∈ (u0, 0, v0) + {(u′, 0, v′) : (u′, v′) ∈ R2r(y0)}. (4.27)

Recalling the definition (4.19), a combination of (4.25) and (4.27) now shows that

�∗(q) = �∗((u, 0, v) · (0, y, 0)) (4.10)= (0, u, v) + Ly ⊂ Π2r(u0, v0, y0).

This will complete the proof of the inclusion �∗(B) ⊂ Π2r(u0, v0, y0).
Let us then prove (4.26). Pick (x, y, t) ∈ BH((0, y0, 0), r). Then,

‖(x, y − y0, t + 1
2xy0)‖ = dH((x, y, t), (0, y0, 0)) ≤ r,

so

|x| ≤ r, |y − y0| ≤ r, and |t + 1
2xy0| ≤ r2. (4.28)

Now, to prove (4.26), recall that πxt(x, y, t) = (x, 0, t − 1
2xy). Thus, we need to show 

that (x, t − 1
2xy) ∈ R2r(y0) = My0(R2r(0)). Equivalently, M−1

y0
(x, t − 1

2xy) ∈ R2r(0). 
Recalling the definition of My, one checks that

M−1
y0

(x, t− 1
2xy) =

(
1 0
y0 1

)
(x, t− 1

2xy)

= (x, xy0 + t− 1
2xy)

= (x, t + 1
2xy0 + 1

2x(y0 − y)).

Using (4.28), we finally note that the point on the right lies in the parabolic rectangle 
R2r(0). This concludes the proof of (4.26).

Let us then prove the inclusion Πr(u0, v0, y0) ⊂ �∗(CB). The set Πr(u0, v0, y0) is a 
union of the lines (0, u0, v0) +(0, �r) +Ly, where �r ∈ Rr(y0) and |y− y0| ≤ r. We need to 
show that every such line can be realised as �∗(q) for some q ∈ BH(p, Cr). In this task, 
we are aided by the formula

�∗((u, 0, v) · (0, y, 0)) = (0, u, v) + Ly

observed in (4.7). This formula shows that we need to define q := (u, 0, v) ·(0, y, 0), where 
(u, v) := (u0, v0) +�r, and y is as in “Ly”. Then we just have to hope that q ∈ BH(p, Cr).

Recalling that p = (u0, 0, v0) · (0, y0, 0), one can check by direct computation that

dH(p, q) = ‖(u0 − u, y0 − y, v0 − v + y0(u0 − u) + 1 (u− u0)(y0 − y)‖. (4.29)
2
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On the other hand, one may easily check that (u, v) ∈ (u0, v0) + Rr(y0) is equivalent to

(u− u0, v − v0 + y0(u− u0)) ∈ Rr(0),

which implies |u − u0| ≤ r and |v− v0 + y0(u − u0)| ≤ r2. Since moreover |y− y0| ≤ r by 
assumption, it follows from (4.29) and the definition of the norm ‖ · ‖ that dH(p, q) � r. 
This completes the proof. �

We close the section with two additional auxiliary results:

Proposition 4.30. Let p, q ∈ H and r ∈ (0, 12 ], and assume that ‖p‖ ≤ 1/10. Assume 
moreover that �∗(p) ∩ B(1) ⊂ �∗(BH(q, r)). Then p ∈ BH(q, Cr) for some absolute con-
stant C > 0.

Proof. Write p = (u, 0, v) · (0, y, 0), so that �∗(p) = (0, u, v) + Ly. Since ‖p‖ ≤ 1/10, in 
particular |u| + |v| ≤ 1/5. By the previous proposition, we already know that

[(0, u, v) + Ly] ∩B(1) = �∗(p) ∩B(1) ⊂ Π2r(u0, v0, y0),

where we have written q = (u0, 0, v0) · (0, y0, 0). Since (0, u, v) ∈ B(1), we know that 
(0, u, v) ∈ �∗(p) ∩ Π2r(u0, v0, y0). But

Π2r(u0, v0, y0) ∩ {x = 0} = {(0, u′, v′) : (u′, v′) ∈ (u0, v0) + Ry0(r)},

so we may deduce that

(u, v) ∈ (u0, v0) + Ry0(r). (4.31)

Moreover, in Remark 4.20 we noted that Π2r(u0, v0, y0) ∩ B(1) is contained in the ∼ r-
neighbourhood T of the line (0, u0, v0) + Ly0 . Therefore also (0, u, v) + Ly ∩ B(1) ⊂ T . 
This implies that ∠(Ly, Ly0) � r, and hence |y − y0| � r.

Now, we want to use (4.31) and |y − y0| � r to deduce that dH(p, q) � r. We first 
expand

dH(p, q) = ‖(u0 − u, y0 − y, v0 − v + y0(u0 − u) + 1
2 (u− u0)(y0 − y)‖. (4.32)

Then, using the definition of Ry0(r) = My(R0(r)), we note that (4.31) is equivalent to

(u− u0, v − v0 + y0(u− u0)) ∈ Rr(0).

Combined with |y−y0| � r, and recalling the definition of ‖ · ‖, this shows that the right 
hand side of (4.32) is bounded by � r, as claimed. �
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We already noted in Remark 4.24 that the (modified) 2r-plates containing �∗(B(p1, r))
and �∗(B(p2, r)) have (almost) the same direction if the points p1, p2 have (almost) 
the same y-coordinate. In this case, if dH(p1, p2) ≥ Cr, it is natural to expect that 
�∗(B(p1, r)) and �∗(B(p2, r)) are disjoint, at least inside B(1). The next lemma verifies 
this intuition.

Lemma 4.33. Let p1 = (u1, 0, v1) ·(0, y1, 0) ∈ BH(1) and p2 = (u2, 0, v2) ·(0, y2, 0) ∈ BH(1)
be points with the properties

|y1 − y2| ≤ r and �∗(BH(p1, r)) ∩ �∗(BH(p2, r)) ∩B(1) �= ∅. (4.34)

Then, dH(p1, p2) � r.

Proof. We may reduce to the case y1 = y2 by the following argument. Start by choosing a 
point p′2 ∈ BH(p2, r) such that the y-coordinate of p′2 equals y1. This is possible, because 
|y1−y2| ≤ r, and the projection of BH(p2, r) to the xy-plane is a Euclidean disc of radius 
r. Then, notice that BH(p2, r) ⊂ BH(p′2, 2r), so

�∗(BH(p1, 2r)) ∩ �∗(BH(p′2, 2r)) ∩B(1) �= ∅.

Now, if we have already proven the lemma in the case y1 = y2 (and for “2r” in place of 
“r”), it follows that dH(p1, p′2) � r, and finally dH(p1, p2) ≤ dH(p1, p′2) + dH(p′2, p2) � r.

Let us then assume that y1 = y2 = y. It follows from (4.34) and the first inclusion in 
Proposition 4.22 combined with the first inclusion in (4.21) that

((0, u1, v1) + PCr(y)) ∩ ((0, u2, v2) + PCr(y)) �= ∅

for some absolute constant C > 0. Let “x” be a point in the intersection, and (using the 
definition of PCr(y)), express x in the two following ways:

(0, u1, v1) + (0, �r1) + Ly(s) = x = (0, u2, v2) + (0, �r2) + Ly(s),

where �r1 ∈ RCr(y) = My(RCr(0)) and �r2 ∈ My(Rr(0)), and s ∈ [−1, 1]. The terms 
Ly(s) conveniently cancel out, and we find that

(u1, v1) − (u2, v2) = �r2 − �r1 ∈ My(R2Cr(0)),

or equivalently

(u1 − u2, v1 − v2 + y(u1 − u2)) = M−1
y (u1 − u2, v1 − v2) ∈ R2Cr(0). (4.35)

We have already computed in (4.32) that

dH(p1, p2) = ‖(u1 − u2, 0, v1 − v2 + y(u1 − u2)‖,
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and now it follows immediately from (4.35) that dH(p1, p2) � r. �
5. Discretising Theorem 1.7

The purpose of this section is to reduce the proof of Theorem 1.7 to Theorem 5.2
which concerns (δ, 3)-sets. We start by defining these precisely:

Definition 5.1 ((δ, t, C)-set). Let (X, d) be a metric space, and let t ≥ 0 and C, δ > 0. A 
non-empty bounded set P ⊂ X is called a (δ, t, C)-set if

|P ∩B(x, r)|δ ≤ Crt · |P |δ, x ∈ X, r ≥ δ.

Here |A|δ is the smallest number of balls of radius δ needed to cover A. A family of sets 
B (typically: disjoint δ-balls) is called a (δ, t, C)-set if P := ∪B is a (δ, t, C)-set.

If P ⊂ H, or B ⊂ P(H), the (δ, t, C)-set condition is always tested relative to the 
metric dH. We then state a δ-discretised version of Theorem 1.7 for sets of dimension 3:

Theorem 5.2. For every η > 0, there exists ε > 0 and δ0 > 0 such that the following holds 
for all δ ∈ (0, δ0]. Let B be a non-empty (δ, 3, δ−ε)-set of δ-balls contained in BH(1), with 
δ-separated centres. Let μ = μf be the measure on H with density

f := (δ4|B|)−1
∑
B∈B

1B . (5.3)

Then,
ˆ

S1

‖πeμ‖2
L2 dH1(e) ≤ δ−η.

The proof of Theorem 5.2 will be given in Section 6. Deducing Theorem 1.7 from 
Theorem 5.2 involves two steps. The first one, carried out in Section 7, is to reduce 
Theorem 1.7 to a δ-discretised version, which concerns (δ, t)-sets with all possible values 
t ∈ [0, 3]. This statement is Theorem 5.11 below, a simplified version of which was stated 
as Theorem 1.10 in the introduction.

The second – and less standard – step, carried out in this section, is to deduce Theo-
rem 5.11 from Theorem 5.2. Heuristically, Theorem 5.2 is nothing but the 3-dimensional 
case of Theorem 5.11 – although in this case the statement looks more quantitative. We 
therefore need to argue that if we already have Theorem 5.11 for sets of dimension 3, 
then we also have it for sets of dimension t ∈ [0, 3]. The heuristic is simple: given a set 
K ⊂ H of dimension t ∈ [0, 3], we start by “adding” (from the left) to K another – 
random – set H ⊂ H of dimension 3 − t. Then, we apply the 3-dimensional version of 
Theorem 5.11 to H ·K, and this gives the correct conclusion for K. A crucial point is 
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that Theorem 5.11 concerns the Lebesgue measure (not the dimension) of πe(K). This 
quantity is invariant under left translating K. This allows us to control Leb(πe(H ·K))
in a useful way.

We turn to the details. To deduce Theorem 1.7 from Theorem 5.2, we need a corollary 
of Theorem 5.2, stated in Corollary 5.6, which concerns slightly more general measures 
than ones of the form μ = μf (as in (5.3)):

Definition 5.4 (δ-measure). Let δ ∈ (0, 1] and C > 0. A Borel measure μ on H is called 
a (δ, C)-measure if μ has a density with respect to Lebesgue measure, also denoted μ, 
and the density satisfies

μ(x) ≤ C · μ(BH(x, δ))
Leb(BH(x, δ)) , x ∈ H.

If the constant C > 0 irrelevant, a (δ, C)-measure may also be called a δ-measure.

We will use the following notion of δ-truncated Riesz energy:

Iδs (μ) :=
¨

dμ(x) dμ(y)
dH,δ(x, y)s

, (5.5)

where μ is a Radon measure, 0 ≤ s ≤ 4, and dH,δ(x, y) := max{dH(x, y), δ}.

Corollary 5.6. For every η > 0, there exists δ0, ε0 > 0 such that the following holds for 
all δ ∈ (0, δ0] and ε ∈ (0, ε0]. Let μ be a (δ, δ−ε)-probability measure on BH(1) with 
Iδ3 (μ) ≤ δ−ε. Then, there exists a Borel set G ⊂ H such that μ(G) ≥ 1 − δε0 , and

ˆ

S1

‖πe(μ|G)‖2
L2 dH1(e) ≤ δ−η. (5.7)

Proof. Fix η > 0, ε ∈ (0, ε0], and δ ∈ (0, δ0]. The dependence of δ0, ε0 on η will eventually 
be determined by an application of Theorem 5.2, but we will require at least that ε0 ≤ η.

It follows from Iδ3(μ) ≤ δ−ε and Chebychev’s inequality that there exists a set G0 ⊂ H

of measure μ(G0) ≥ 1 − 3δε0 such that μ(BH(x, r)) � δ−ε−ε0r3 ≤ δ−2ε0r3 for all x ∈ G0
and r ≥ δ. Now, for dyadic rationals 0 < α � δ3−2ε0 ≤ δ2, let

G0,α := {x ∈ G0 : α
2 ≤ μ(BH(x, δ)) ≤ α}.

We discard immediately the sets G0,α with α ≤ δ10: the union of these sets has measure 
≤ δ5 ≤ δε0 for δ > 0 small enough, so μ(G1) ≥ 1 − 2δε0 , where

G1 := G0 \
⋃

10

G0,α.

α≤δ
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Now, G1 is covered by the sets G0,α with δ10 ≤ α � δ2, and the number of such sets 
is m � log(1/δ). We let {α1, . . . , αm} be an enumeration of these values of “α”, and we 
abbreviate Gj := G0,αj

. We note that the union of the sets Gj with μ(Gj) ≤ δ2ε0 has 
measure at most m · δ2ε0 ≤ δε0 (for δ > 0 small), so finally

G := G1 \
⋃

{Gj : 1 ≤ j ≤ m and μ(Gj) ≤ δ2ε0}

has measure μ(G) ≥ 1 − 2δε0 − δε0 ≥ 1 − δε0 . Moreover, G is covered by the sets Gj

with μ(Gj) ≥ δ2ε0 . Re-indexing if necessary, we now assume that μ(Gj) ≥ δ2ε0 for all 
1 ≤ j ≤ m.

For 1 ≤ j ≤ m fixed, let Bj be a finitely overlapping (Vitali) cover of Gj by balls of 
radius δ, centred at Gj. Using the facts Gj ⊂ G0 and μ(Gj) ≥ δ2ε0 , and the uniform 
lower bound μ(BH(x, δ)) ≥ αj/2 for x ∈ Gj , it is easy to check that each Bj is a 
(δ, 3, δ−Cε0)-set with

|Bj | � α−1
j . (5.8)

Thus, writing

fj := (δ4|Bj |−1)
∑
B∈Bj

1B and μj := μfj ,

and assuming that δ0, ε0 > 0 are sufficiently small in terms of η, we may deduce from 
Theorem 5.2 that

ˆ

S1

‖πe(μj)‖2
L2dH1(e) ≤ δ−η, 1 ≤ j ≤ m.

Finally, it follows from the (δ, δ−ε)-property of μ that

μ(x) � δ−ε · μ(BH(x, δ))
δ4 ≤ δ−ε · αj

δ4

(5.8)
� δ−ε

δ4|Bj |
≤ δ−ε · μj(x), x ∈ Gj .

Thus, also the density of πe(μ|Gj ) is bounded from above by the density of πe(μj):

ˆ

S1

‖πe(μ|G)‖2
L2 dH1(e) � δ−ε

m∑
j=1

ˆ

S1

‖πe(μj)‖2
L2 dH1(e) � log(1/δ) · δ−η−ε ≤ δ−3η.

This completes the proof of (5.7) (with “3η” in place of “η”). �
The concrete δ-measures we will consider have the form η ∗H μ, where μ = μf has 

a density of the form (5.3) (these are almost trivially δ-measures), and η is a (discrete) 
probability measure. The notation η ∗H μ refers to the (non-commutative!) Heisenberg 
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convolution of η and μ, that is, the push-forward of η × μ under the group product 
(p, q) �→ p · q. Let us verify that such measures η ∗H μ are also δ-measures:

Lemma 5.9. Let μ be (δ, C) measure, and let η be an arbitrary Borel probability measure 
on H. Then η ∗H μ is again a (δ, C)-measure.

Proof. Recall that a (δ, C) measure is absolutely continuous by definition, so the notation 
“μ(p)” is well-defined for Lebesgue almost every p ∈ H. The following formulae are valid, 
and easy to check, for Lebesgue almost every p ∈ H:

(η ∗H μ)(p) =
ˆ

μ(q−1 · p) dη(q)

and

(η ∗H μ)(BH(p, r))
Leb(BH(p, r)) =

ˆ
μ(BH(q−1 · p, r))
Leb(BH(p, r)) dη(q). (5.10)

Now, if one applies the δ-measure assumption to the formula on the left hand side, one 
obtains

(η ∗H μ)(p) ≤ C

ˆ
μ(BH(q−1 · p, δ))

Leb(BH(q−1 · p, δ)) dη(q).

Lebesgue measure is invariant under left translations, so

Leb(BH(q−1 · p, δ)) = Leb(BH(p, δ)).

Therefore, it follows from equation (5.10) that

(η ∗H μ)(p) ≤ C · (η ∗H μ)(BH(p, δ))
Leb(BH(p, δ))

for Lebesgue almost every p ∈ H. This is what we claimed. �
We are then ready to state and prove the δ-discretised counterpart of Theorem 1.7.

Theorem 5.11. Let 0 ≤ s < t ≤ 3. Then, there exist ε, δ0 > 0, depending only on s, t, 
such that the following holds for all δ ∈ (0, δ0]. Let B �= ∅ be a (δ, t, δ−ε) set of δ-balls 
with δ-separated centres, all contained in BH(1), and let S ⊂ S1 be a Borel set of length 
H1(S) ≥ δε. Then, there exists e ∈ S such that the following holds: if B′ ⊂ B is any 
sub-family with |B′| ≥ δε|B|, then

Leb(πe(∪B′)) ≥ δ3−s.

In particular, πe(∪B′) cannot be covered by fewer than δ−s parabolic balls of radius δ.
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Proof. To reach a contradiction, assume that there exists a (δ, t, δ−ε)-set B of δ-balls with 
δ-separated centres, contained in BH(1), and violating the conclusion of Theorem 5.11: 
there exists s < t, and for every e ∈ S (Borel subset of S1 of length H1(S) ≥ δε), there 
exists a subset Be ⊂ B with |Be| ≥ δε|B| with the property

Leb(πe(∪Be)) ≤ δ3−s. (5.12)

We aim for a contradiction if ε, δ are sufficiently small. We fix an auxiliary parameter 
0 < η < (t − s)/2. Then, we apply Corollary 5.6 to find the constant ε0 > 0 which 
depends only on η. Finally, we will assume, presently, that ε < ε0/2, and η + 3ε < t − s.

Let μ be the uniformly distributed probability measure on ∪B; in particular μ is a 
δ-measure (with absolute constant), and Iδt (μ) � δ−ε. Apply Proposition A.1 to find a 
set H ⊂ BH(1) of cardinality |H| ≤ δt−3 such that Iδ3(τ ∗H μ) � δ−ε, where τ is the 
uniformly distributed probability measure on H. Write ν := τ ∗Hμ, so ν is a δ-probability 
measure by Lemma 5.9. Since ε < ε0/2 and Iδ3(ν) � δ−ε, it follows form Corollary 5.6
that there exists a set G ⊂ H of measure ν(G) ≥ 1 − δε0 such that

1
H1(S)

ˆ

S

‖πe(ν|G)‖2
L2 dH1(e) ≤ 1

H1(S)

ˆ

S1

‖πe(ν|G)‖2
L2 dH1(e) ≤ δ−η−ε. (5.13)

Finally, write Be := H · (∪Be) for all e ∈ S1, and note that ν(Be) ≥ δε for all e ∈ S

(this is a consequence of the general inequality (μ1 ∗H μ2)(A · B) ≥ (μ1 × μ2)(A × B)). 
Consequently, also ν(G ∩ Be) ≥ ν(G) + ν(Be) − 1 ≥ δε − δε0 ≥ δε/2, using ε < ε0/2. 
Therefore,

δ2ε/4 ≤ ‖πe(ν|G∩Be
)‖2

L1 ≤ Leb(πe(Be)) · ‖πe(ν|G)‖2
L2 , e ∈ S1,

using Cauchy-Schwarz, and it follows from (5.13) that Leb(πe(Be)) � δη+3ε for at least 
one vector e ∈ S. On the other hand, note that Be = H · (∪Be) is a union of ≤ δt−3 left 
translates of ∪Be, and recall from (2.1) that

Leb(πe(p ·B)) = Leb(πe(B)), p ∈ H, B ⊂ H.

Therefore, we have the upper bound

Leb(πe(Be)) = Leb(πe(H · (∪Be)))
(5.12)
≤ δt−3 · δ3−s = δt−s, e ∈ S1.

Since η+3ε < t −s by assumption, the previous lower and upper bounds for Leb(πe(Be))
are not compatible for δ > 0 small enough. A contradiction has been reached. �
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6. Kakeya estimate of Guth, Wang, and Zhang

The purpose of this section is to prove Theorem 5.2. This will be based on the duality 
between horizontal lines and light rays developed in Section 4, and an application of a 
(reverse) square function inequality for the cone, due to Guth, Wang, and Zhang [10]. 
To be precise, we will not need the full power of this “oscillatory” statement, but rather 
only a Kakeya inequality for plates in [10, Lemma 1.4]. To introduce the statement, 
we need to recap some of the terminology and notation in [10]. This discussion follows 
[10, Section 1], but we prefer a different scaling: more precisely, in our discussion the 
geometric objects (plates and rectangles) of [10] are dilated by “R” on the frequency side 
and (consequently) by R−1 on the spatial side.

Fix R ≥ 1, and let

Γ := ΓR := C ∩ {R/2 ≤ |ξ| ≤ R}. (6.1)

Let Γ(1) be the 1-neighbourhood of Γ, and let Θ := ΘR be a finitely overlapping cover 
of Γ(1) by rectangles of dimensions R × R1/2 × 1, whose longest side is parallel to a 
light ray. The statements in [10] are not affected by the particular construction of Θ, 
but in our application, the relevant rectangles are translates of dual rectangles of the 
δ-plates in Definition 4.16, with δ = R−1/2. Indeed, δ-plates are rectangles of dimensions 
∼ δ2×δ×1 tangent to C, so their dual rectangles are plates of dimensions ∼ R×R1/2×1, 
also tangent to C (this is because C has opening angle π/2, see Fig. 3). For concreteness, 
we will use translated duals of R−1/2-plates (as in Definition 4.16) to form the collection 
Θ.

For each θ ∈ Θ, let fθ ∈ L2(R3) be a function with spt f̂θ ⊂ θ, and consider the square 
function

Sf :=
(∑

θ∈Θ

|fθ|2
)1/2

.

Then, [10, Lemma 1.4] contains an inequality of the following form:

ˆ

R3

|Sf |4 �
∑

R−1/2≤s≤1

∑
d(τ)=s

∑
U‖Uτ

Leb(U)−1‖SUf‖4
L2 . (6.2)

To understand the meaning of the “partial” square functions SU we need to introduce 
more terminology from [10]. Fix a dyadic number s ∈ [R−1/2, 1] (an “angular” pa-
rameter), and write R′ := s2R ∈ [1, R]. The 1-neighbourhood of the truncated cone 
ΓR′ = C ∩ {|ξ| ∼ R′} can be covered by a finitely overlapping family ΘR′ of rectangles 
of dimensions

R′ × (R′)1/2 × 1 = s2R× sR1/2 × 1.
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(Here ΘR agrees with Θ, as defined above.) Consequently, the (R′)−1-neighbourhood of 
ΓR is covered by the rescaled rectangles

Ts := {s−2θ : θ ∈ ΘR′}

of dimensions R× s−1R1/2 × s−2. Note that the family T1 coincides with ΘR (at least if 
it is defined appropriately), whereas TR−1/2 consists of ∼ 1 balls of radius R. For every 
s ∈ [R−1/2, 1], the rectangles in Ts are at least as large as those in ΘR, so we may assume 
that every θ ∈ ΘR is contained in at least one rectangle τ ∈ Ts.

For θ ∈ ΘR and τ ∈ Ts, let θ∗ and τ∗ be the dual rectangles of θ and τ (here the word 
“dual” refers to the common notion in Euclidean Fourier analysis, and not the duality in 
the sense of Proposition 4.22). Then both θ∗ and τ∗ are rectangles centred at the origin, 
with dimensions

R−1 ×R−1/2 × 1 and R−1 × sR−1/2 × s2,

respectively. The longest sides of both θ∗ and τ∗ remain parallel to a light ray on C: this 
is again the convenient property of the “standard” cone C with opening angle π/2, see 
Fig. 3. Of course, θ∗ is an R−1/2-plate in the sense of Definition 4.16, since the elements 
θ ∈ Θ were defined as (translates of) duals or R−1/2-plates.

Fig. 3. On the left: the truncated cone Γ and one of the plates θ. On the right: the cone C and the dual plate 
θ∗.

The set τ∗ turns out to be (essentially) a dilate of an (s2R)−1/2-plate. For every 
τ ∈ Ts, consider Uτ := s−2τ∗, which is a rectangle of dimensions

s−2R−1 × s−1R−1/2 × 1 = (s2R)−1 × (s2R)−1/2 × 1.

In particular, Uτ is an (s2R)−1/2-plate, and hence larger than (or at least as large as) 
θ∗: if θ ⊂ τ , then every translate of θ∗ is contained in some translate of 10Uτ . We let Uτ
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be a tiling of R3 by rectangles parallel to Uτ . Now we may finally define the “partial” 
square function SUf :

SUf :=
(∑

θ⊂τ

|fθ|2
)1/2

· 1U , U ∈ Uτ . (6.3)

We have now explained the meaning of (6.2), except the sum over “d(τ) = s”. In our 
notation, this means the same as summing over τ ∈ Ts.

We are then prepared to prove Theorem 5.2.

Proof of Theorem 5.2. Let δ ∈ (0, 12 ], and let B be a (δ, 3, δ−ε)-set of δ-balls with δ-
separated centres. In the statement of Theorem 5.2, it was assumed that ∪B ⊂ BH(1), 
but for slight technical convenience we strengthen this (with no loss of generality) to 
∪B ⊂ BH(c) for a small absolute constant c > 0. As in the statement of Theorem 5.2, 
let μ be the measure on H with density

f := (δ4|B|)−1
∑
B∈B

1B .

Following the discussion Section 4.1, and in particular recalling equation (4.15), Theo-
rem 5.2 will be proven if we manage to establish that

ˆ

L∠

Xf(�)2 dm(�) ≤ δ−η, (6.4)

assuming that ε, δ > 0 are small enough, depending on η. Recall that L∠ = �({(a, b, c) :
|a| ≤ 1}). To estimate the quantity in (6.4), notice first that

Xf(�) =
ˆ

�

f dH1 � (δ3|B|)−1 · |{B ∈ B : � ∩B �= ∅}|, � ∈ L∠, (6.5)

because H1(B ∩ �) � δ for all B ∈ B. Write N(�) := |{B ∈ B : � ∩B �= ∅}|. Then, as we 
just saw,

ˆ

L∠

Xf(�)2 dm(�) � (δ3|B|)−2
ˆ

L∠

N(�)2 dm(�)

≤ (δ3|B|)−2
ˆ

B(2)

N(�(p))2 dLeb(p).

The second inequality is based on (a) the definition of the measure m = �
Leb, and (b) 
the observation that if �(p) ∈ L∠ and N(�(p)) �= 0, then �(p) ∩BH(c) �= ∅, and this forces 
p ∈ B(2) (if c > 0 was taken small enough). Finally, by Lemma 4.11, we have
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N(�(p)) ≤ |{B ∈ B : p ∈ �∗(B)}| =
∑
B∈B

1�∗(B)(p).

Indeed, whenever �(p) ∩ B �= ∅ for some B ∈ B, there exists a point q ∈ �(p) ∩ B, and 
then Lemma 4.11 implies that p ∈ �∗(q) ⊂ �∗(B). Therefore, combining (6.4)-(6.5), it 
will suffice to show that for η > 0 fixed, the inequality

ˆ

B(2)

( ∑
B∈B

1�∗(B)

)2
≤ δ−η · (δ3|B|)2 (6.6)

holds assuming that we have picked ε > 0 (in the (δ, 3, δ−ε)-set hypothesis for B) suf-
ficiently small, depending on η. We formulate a slightly more general version of this 
inequality in Proposition 6.7 below, and then explain in the remark afterwards why 
(6.6) is a consequence. This completes the proof of Theorem 5.2. �
Proposition 6.7. For every ε > 0, there exists δ0 > 0 such that the following holds for all 
δ ∈ (0, δ0]. Let B be a family of δ-balls contained in BH(1) with δ-separated centres, and 
satisfying the following non-concentration condition for some C > 0:

|{B ∈ B : B ⊂ BH(p, r)}| ≤ C ·
(r
δ

)3
, p ∈ H, r ≥ δ. (6.8)

Then,
ˆ

B(2)

( ∑
B∈B

1�∗(B)

)2
≤ C · δ3−ε|B|. (6.9)

Remark 6.10. Why is (6.6) a consequence of (6.9)? In (6.6), we assumed that B is a 
(δ, 3, δ−ε)-set. This implies

|{B ∈ B : B ⊂ BH(p, r)}| � δ−ε · r3|B|, p ∈ H, r ≥ δ.

Therefore, (6.8) is satisfied with constant C ∼ δ3−ε|B|. Hence (6.9) implies (6.6) if we 
choose ε < η/2 and then δ > 0 sufficiently small.

We chose to formulate Proposition 6.7 separately because the “meaning” of (6.9)
is easier to appreciate than that of (6.6): namely, if all the sets �∗(B) had a disjoint 
intersection inside B(1), then the left hand side of (6.9) would be roughly δ3|B|. Thus, 
(6.9) tells us that under the non-concentration condition (6.8), the sets �∗(B) are nearly 
disjoint inside B(1), at least at the level of L2-norms.

Proof of Proposition 6.7. By the discussion in Section 4.2, the intersections �∗(B) ∩B(2)
are essentially δ-plates – rectangles of dimensions 1 ×δ×δ2 tangent to C. More precisely, 
for every B ∈ B, let PB ⊂ R3 be a Cδ-plate (as in Definition 4.16) with the property
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�∗(B) ∩B(2) ⊂ PB .

This is possible by first applying Proposition 4.22 (which yields a modified 2δ-plate 
containing �∗(B)), and then the first inclusion in (4.21), which shows that the intersection 
of the modified 2δ-plate with B(2) is contained in a Cδ-plate PB. Now, we will prove 
(6.9) by establishing that

ˆ ( ∑
B∈B

1PB

)2
≤ C · δ3−ε|B|. (6.11)

Every plate PB has a direction, denoted θ(PB): this is the direction of the longest axis 
of PB , or more formally the real number “y ∈ [−1, 1]” associated to the line “Ly” in 
Definitions 4.16. By enlarging the plates PB slightly (if necessary), we may assume that 
their directions lie in the set Θ := (δZ) ∩ [−1, 1]: this is because if two plates coincide 
in all other parameters, and differ in direction by ≤ δ, both are contained in constant 
enlargements of the other (this is not hard to check). The reason why we may restrict 
attention to [−1, 1] is that all the plates PB were associated to the balls B ⊂ BH(1), and 
in fact the y-coordinate of the centre of B determines the direction of PB (see (4.10)).

We next sort the family {PB}B∈B according to their directions:

{PB : B ∈ B} =:
⋃
θ∈Θ

P(θ),

where P(θ) := {PB : θ(PB) = θ}. Thus, for θ ∈ Θ fixed, the plates in P(θ) are all 
translates of each other. Also, the plates in P(θ) for a fixed θ have bounded overlap: 
this follows from the assumption that the balls in B have δ-separated centres, and uses 
Lemma 4.33 (the plates with a fixed direction correspond precisely to Heisenberg balls 
whose y-coordinates are, all, within “δ” of each other).

Write R := δ−2, thus δ = R−1/2, and recall the truncated cone Γ = ΓR from (6.1). 
Since the plates P ∈ P(θ) are translates of each other, they all have a common dual 
rectangle P∗

θ of dimensions ∼ R×R1/2×1. The rectangle P∗
θ is centred at 0, but we may 

translate it by ∼ R in the direction of its longest R-side (a light ray depending on θ) so 
that the translate lies in the O(1)-neighbourhood of ΓR. Committing a serious abuse of 
notation, we will denote this translated dual rectangle again by “θ”, and the collection 
of all these sets is denoted Θ. This notation coincides with the discussion below (6.1). 
There is a 1-to-1 correspondence between the directions θ ∈ Θ = δZ ∩ [−1, 1] and the 
rectangles θ ∈ Θ defined just above, so the notational inconsistency should not cause 
confusion.

We gradually move towards applying the inequality (6.2) of Guth, Wang, and Zhang. 
The next task is to define the functions fθ and f =

∑
θ∈Θ fθ. Fix θ ∈ Θ, P ∈ P(θ), and 

let ϕP ∈ S(R3) be a non-negative Schwartz function with the properties

(1) 1P ≤ ϕP � 1,
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(2) ϕP has rapid decay outside P,
(3) ϕ̂P ⊂ P∗

θ .

Here “rapid decay outside P has” the usual meaning: if λP denotes a λ-times dilated, 
concentric, version of P, then ϕ(x) �N λ−N for all x ∈ R3 \ λP (and for any N ∈ N). 
Then, define the function

fθ :=
∑

P∈P(θ)

eθ · ϕP .

Here eθ is a modulation, depending only on θ, such that

êθ · ϕP ⊂ θ.

Now the function f =
∑

θ∈Θ fθ satisfies all the assumptions of the inequality (6.2), so

ˆ

R3

( ∑
B∈B

1PB

)2
=
ˆ

R3

(∑
θ∈Θ

∑
P∈P(θ)

1PB

)2

≤
ˆ

R3

(∑
θ∈Θ

∣∣∣ ∑
P∈P(θ)

eθ · ϕP

∣∣∣2)2

=
ˆ

R3

|Sf |4 �
∑

R−1/2≤s≤1

∑
d(τ)=s

∑
U‖Uτ

Leb(U)−1‖SUf‖4
L2 . (6.12)

Recall the notation on the right hand side, in particular that δ = R−1/2 ≤ s ≤ 1 only 
runs over dyadic rationals, and the definition of the “partial” square function SUf from 
(6.3). The rectangles U are Δ-plates with Δ = (s2R)−1/2 = s−1δ. In particular, every 
U is essentially the �∗-dual of a Heisenberg Δ-ball: this will allow us to control ‖SUf‖L2

by applying the non-concentration condition (6.8) between scales δ and 1.
By definition,

‖SUf‖2
2 =

ˆ

U

∑
θ⊂τ

|fθ|2 =
ˆ

U

∑
θ⊂τ

( ∑
P∈P(θ)

ϕP
)2 �

ˆ

U

∑
θ⊂τ

∑
P∈P(θ)

ϕP . (6.13)

Above, and in the sequel, the notation A � B means that for every ρ > 0, there exists 
a constant Cρ > 0 such that A ≤ Cρδ

−ρB. In (6.13), the final “�” inequality follows 
easily from the rapid decay of the functions ϕP , and the bounded overlap of the plates 
P ∈ P(θ) for θ ∈ Θ fixed.

For θ ⊂ τ , each plate P ∈ P(θ) is contained in some translate of 10Uτ (this was 
discussed above (6.3)), but this translates may not be U . Let U ⊃ U be an (RεΔ)-plate 
which is concentric with U . We then decompose the right hand side of (6.13) as
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ˆ

U

∑
θ⊂τ

∑
P∈P(θ)

ϕP ≤
ˆ ∑

θ⊂τ

∑
P∈P(θ)
P⊂U

ϕP +
ˆ

U

∑
θ⊂τ

∑
P∈P(θ)
P�⊂U

ϕP . (6.14)

Since each P ∈ P(θ) is contained in element of the tiling Uτ (consisting of translates of 
U) every plate P(θ) with P �⊂ U is far away from U : more precisely, Rε/2P ∩U = ∅. By 
the rapid decay of ϕP outside P, this implies that ϕP �ε δ100 on U , and therefore the 
second term of (6.14) is bounded by, say, �ε δ

50.
We then focus on the first term of (6.14), and we first note that

ˆ ∑
θ⊂τ

∑
P∈P(θ)
P⊂U

ϕP � δ3 · |{P : P ⊂ U}|, (6.15)

since ‖ϕP‖L1 ∼ Leb(P) ∼ δ3. So, we need to find out how many δ-plates P are contained 
in U. Since U is an (RεΔ)-plate, it follows from the second inclusion (4.21), combined 
with the second inclusion in Proposition 4.22, that

U ⊂ �∗(BH(pU , CRεΔ)) =: �∗(BU ).

for some pU ∈ H, and for some absolute constant C > 0. On the other hand, the plates 
P = PB , B ∈ B, were initially chosen in such a way that �∗(B) ∩{(s, y, z) : |s| ≤ 1} ⊂ PB . 
Thus, whenever PB ⊂ U, we have

�∗(B) ∩ {(s, y, z) : |s| ≤ 1} ⊂ PB ⊂ U ⊂ �∗(BU ).

This implies by Proposition 4.30 that B ⊂ BU , where possibly BU was inflated by 
another constant factor. Thus,

|{P : P ⊂ U}| � |{B ∈ B : B ⊂ BU}|.

Using (6.8), this will easily yield useful upper bounds for |{P : P ⊂ U}|.
To make this precise, we sort the sets “U” appearing in (6.12) according to the “rich-

ness”

ρ(U) := |{B ∈ B : B ⊂ BU}|
(6.8)
≤ C ·

(
CRεΔ

δ

)3

. (6.16)

For s ∈ [R−1/2, 1] fixed, we choose a (dyadic) value ρ = ρs such that

∑
d(τ)=s

∑
U‖Uτ

Leb(U)−1‖SUf‖4
L2 �

∑
d(τ)=s

∑
U‖Uτ

Leb(U)−1‖SUf‖4
L2 . (6.17)
ρ(U)∼ρ
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Here “�” hides a constant of the form C log(1/δ). Let U(ρ) be the collection of sets “U” 
appearing on the right hand side, and let B′ ⊂ B be the subset of the original δ-balls 
which are contained in some ball BU , U ∈ U(ρ). Then, evidently,

|B′| � ρ · |U(ρ)| � RCε|B′|. (6.18)

The factor “RCε” arises from the fact that while distinct sets “U” are the duals of 
essentially disjoint Heisenberg Δ-balls, the inflated balls BU only have bounded overlap, 
depending on the inflation factor Rε.

Now, for U ∈ U(ρ), we may estimate (6.15) as follows:

‖SUf‖2
L2 �ε

ˆ ∑
θ⊂τ

∑
P∈P(θ)
P⊂U

ϕP � δ3 · ρ � δ3 ·RCε · |B′|
|U(ρ)| .

(In this estimate, we have omitted the term “δ50” from the second part of (6.14), because 
this term will soon turn out to be much smaller than the best bounds for what remains.) 
Plugging this estimate into (6.17), and observing that Leb(U) = Δ3, we obtain

∑
d(τ)=s

∑
U‖Uτ

Leb(U)−1‖SUf‖4
L2 �ε |U(ρ)| · Δ−3 ·

(
δ3 ·RCε · |B′|

|U(ρ)|
)2

= Δ−3 · δ6 ·R2Cε · |B′|2
|U(ρ)|

(6.16)&(6.18)
� C ·R3Cε · δ3|B|.

Notably, this estimate is independent of “Δ” and the parameter “s”, so we may finally 
deduce from (6.12) that

ˆ

R3

( ∑
B∈B

1PB

)2
�ε C ·R3Cε · δ3|B|.

Since R = δ−2 and ε > 0 was arbitrary, this implies (6.9) by renaming variables, and the 
proof of Proposition 6.7 is complete. �
7. Proof of Theorem 1.7

We recall the statement:

Theorem 7.1. Let K ⊂ H be a Borel set with dimHK = t ∈ [2, 3]. Then, dimE πe(K) ≥
t − 1 for H1 almost every e ∈ S1. Consequently, dimH πe(K) ≥ 2t − 3 for H1 almost 
every e ∈ S1.
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Proof. The lower bound for dimH πe(K) follows immediately from the lower bound for 
dimE(K), combined with a general inequality between Hausdorff dimensions relative to 
Euclidean and Heisenberg metrics of subsets of We, see [1, Theorem 2.8]. So, we focus 
on proving that dimE(K) ≥ t − 1 for H1 almost every e ∈ S1.

The first steps of the proof are standard; similar arguments have appeared, for example 
the deduction of [16, Theorem 2] from [16, Theorem 1]. So we only sketch the first part 
of the proof, and provide full details where they are non-standard. First, we may assume 
that K ⊂ BH(1), and we may assume, applying Frostman’s lemma, that K = spt(μ) for 
some Borel probability measure μ satisfying μ(BH(p, r)) � rt for all p ∈ H and r > 0.

We make the counter assumption that there exists s ∈ (1, t) such that

H1({e ∈ S1 : dimE πe(K) ≤ s− 1}) > 0.

By several applications of the pigeonhole principle, this assumption can be applied to 
find the following objects for any ε > 0, and for arbitrarily small δ > 0:

(1) A Borel subset S′ ⊂ S1 of length H1(S′) ≥ δε/2.
(2) For every e ∈ S′ a collection of ≤ δ1−s Euclidean δ-discs We, contained in We.
(3) If We := ∪We and e ∈ S′, then

μ(π−1
e (We)) ≥ δε/2. (7.2)

We claim that (1)-(3) violate Theorem 5.11 if δ, ε > 0 are small enough. To this end, 
we first need to construct a relevant (δ, t, δ−ε)-set of (Heisenberg) δ-balls B contained in 
BH(1). Morally, this collection is a δ-approximation of K = spt(μ). More precisely, we 
need to decompose K to the following subsets:

Kα := {p ∈ K : α
2 ≤ μ(BH(p, δ)) ≤ α},

where α > 0 runs over dyadic rationals with α � δt. By one final application of the 
pigeonhole principle, and recalling (7.2), one can find a fixed index α ∈ 2−N such that

μ(π−1
e (We) ∩Kα) ≥ δε (7.3)

for all e ∈ S ⊂ S′, where H1(S) ≥ δε. In particular, μ(Kα) ≥ δε. Then, we let B be 
a (Vitali) cover of Kα by finitely overlapping Heisenberg δ-balls with (δ/5)-separated 
centres. Note that δεα−1 � |B| � α−1. Using the definition of Kα, and the Frostman 
condition for μ, it is now easy to check that B is a (δ, t, Cδ−ε)-set of δ-balls, where C is 
roughly the Frostman constant of μ.

Finally, from (7.3) and α � |B|−1, we deduce that if e ∈ S, then π−1
e (We) intersects 

� δε|B| elements of B, since

δε ≤ μ(π−1
e (We) ∩Kα) ≤ α · |{B ∈ B : π−1

e (We) ∩B �= ∅}|, e ∈ S.



38 K. Fässler, T. Orponen / Advances in Mathematics 431 (2023) 109248
Write Be := {B ∈ B : π−1
e (We) ∩ B �= ∅}, thus |Be| � δε|B|. We now arrive at the point 

where it is crucial that the elements of We are Euclidean δ-discs. Namely, if B ∈ Be, 
then π−1

e (D) ∩ B �= ∅ for some D ∈ We. Then, because D is a Euclidean δ-disc, and 
the Euclidean diameter of πe(B) is � δ, we may conclude that πe(B) ⊂ 2D. This could 
seriously fail if D were a disc in the metric dH. Now, however, we see that

πe(∪Be) ⊂ ∪{2D : D ∈ We},

and in particular Leb(πe(∪Be)) � δ2 · |We| ≤ δ3−s for all e ∈ S. This violates the 
conclusion of Theorem 5.11, and the proof of Theorem 7.1 is complete. �
Appendix A. Completing (δ, t)-sets to (δ, 3)-sets

In this section, we use the following notation for the δ-truncated s-dimensional Riesz 
energy of a Radon measure ν on H:

Iδs (ν) :=
¨

dν(x) dν(y)
dH,δ(x, y)s+t

,

where dH,δ(x, y) := max{dH(x, y), δ}. We also recall that μ ∗H ν is the Heisenberg con-
volution of μ and ν, that is, the push-forward of μ × ν under the group operation 
(p, q) → p · q.

Proposition A.1. Let 0 ≤ s, t ≤ 3 with s + t ≤ 3, and let δ ∈ (0, 12 ]. Let μ be a Borel 
probability measure on BH(1) with Iδt (μ) ≤ C. Then, there exists a set H ⊂ BH(1) with 
|H| ≤ δ−s such that the uniformly distributed (discrete) measure η on H satisfies

Iδs+t(η ∗ μ) ≤ C′,

where C′ ≤ C log(1/δ)C · C for some absolute constant C > 0.

Proof. Let Z := δ · Z3 ∩ BH(1) be a grid of Euclidean δ-separated lattice points in 
BH(1). Then |Z| ∼ δ−3. Let Hω ⊂ Z be a random set, where each point of Z is included 
independently with probability δ−s/(2|Z|). In particular, Eω|Hω| = δ−s/2. While we use 
the symbol “ω” to index the elements in the underlying probability space, no explicit 
reference to this space will be needed. Let ηω be the random measure

ηω := δs
∑
p∈Hω

δp = δs
∑
p∈Z

1Hω
(p) · δp.

We claim that

Eω

(
Iδs+t(ηω ∗H μ)

)
=
¨

Eω

¨
dηω(p)dηω(q)

s+t
dμ(x) dμ(y) ≤ C′. (A.2)
dH,δ(p · x, q · y)
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for some C′ � C. In this argument, the notation “�” hides a constant of the form 
C log(1/δ)C . The inequality (A.2) will complete the proof of the proposition, because 
|Hω| ≤ δ−s with probability ≥ 1

2 (for δ > 0 small enough), and therefore, by Chebychev’s 
inequality, Iδs+t(ηω ∗H μ) � C′ for some “ω” with |Hω| ≤ δ−s.

To prove (A.2), it clearly suffices to establish that

Eω

¨
dηω(p)dηω(q)

dH,δ(p · x, q · y)s+t
� 1

dH,δ(x · y)t , x, y ∈ spt(μ) ⊂ BH(1). (A.3)

By definition of ηω, we have

¨
dηω(p)dηω(q)

dH,δ(p · x, q · y)s+t
= δ2s

∑
p,q∈Z

1Hω
(p)1Hω

(q)
dH,δ(p · x, q · y)s+t

= δ2s
∑
p∈Z

1Hω
(p)

dH,δ(x, y)s+t
+ δ2s

∑
p,q∈Z
p�=q

1Hω(p)1Hω(q)

dH,δ(p · x, q · y)s+t

=: Σ1(ω) + Σ2(ω).

We consider the expectations of Σ1(ω) and Σ2(ω) separately. The former one is simple, 
using that Eω(1Hω

(p)) = Pω{p ∈ Hω} = δ−s/(2|Z|) ∼ δ3−s:

EωΣ1(ω) ∼ δ2s
∑
p∈Z

δ3−s

dH,δ(x, y)s+t
= |Z| · δ3+s

dH,δ(x, y)s+t
� δs

dH,δ(x, y)s+t
≤ 1

dH,δ(x, y)t
,

recalling that |Z| � δ−3. To handle the expectation of Σ2(ω), we note that {p ∈ Hω}
and {q ∈ Hω} are independent events for p �= q, hence

EωΣ2(ω) ∼ δ2s
∑

p,q∈Z
p�=q

δ6−2s

dH,δ(p · x, q · y)s+t

∼ δ6
∑
p∈Z

∑
δ≤r≤1

r−s−t|{q ∈ Z : dH,δ(p · x, q · y) ∼ r}|,

where “r” runs over dyadic rationals. Since the product “·” is not commutative, in general 
dH,δ(p · x, q · y) �= dH,δ(p · x · y−1, q), so the set {q ∈ Z : dH,δ(p · x, q · y) ∼ r} is not
contained in a H-ball of radius ∼ r around p · x · y−1. This is the key inefficiency in the 
argument, and causes the restriction s + t ≤ 3: under this restriction, it actually suffices 
to note that {q ∈ Z : dH,δ(p · x, q · y) ∼ r} is contained in a Euclidean Cr-ball. To see 
this, note that if q ∈ Z satisfies dH,δ(p · x, q · y) � r with r ≥ δ, then

q ∈ BH(p · x,Cr) · y−1.
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Here BH(p ·x, Cr) is contained in a Euclidean ball of radius � r (using r ≤ 1). The same 
remains true after the right translation by y−1, because |y| � 1 (by assumption), and 
the right translation z �→ z · y−1 is Euclidean Lipschitz with constant depending only on 
|y|.

Now, since a Euclidean r-ball contains � (r/δ)3 points of Z, we see that

EωΣ2(ω) � δ3
∑
p∈Z

∑
δ≤r≤1

r3−s−t � 1 ≤ 1
dH,δ(x, y)s+t

,

where in the final inequality we used again that x, y ∈ spt(μ) ⊂ BH(1). This completes 
the proof of (A.3), and therefore the proof of the proposition. �
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