On Limits at Infinity of Weighted Sobolev Functions
Eriksson-Bique, S., Koskela, P., & Nguyen, K. (2022). On Limits at Infinity of Weighted Sobolev Functions. Journal of Functional Analysis, 283(10), Article 109672. https://doi.org/10.1016/j.jfa.2022.109672
Published in
Journal of Functional AnalysisDate
2022Discipline
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Copyright
© 2022 The Author(s). Published by Elsevier Inc.
We study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable gradient |∇u|∈Lp(Rd,w) where 1≤p<∞ and 2≤d<∞. The question is shown to subtly depend on the sense in which the limit is taken.
First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of Fefferman and Uspenskiĭ.
As applications to partial differential equations, we give results on the limiting behavior of weighted q-Harmonic functions at infinity (1
<∞), which depend on the integrability degree of its gradient.
Publisher
ElsevierISSN Search the Publication Forum
0022-1236Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/151576931
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
The first author was supported by the Academy of Finland grant # 345005. The second author and third author were supported by the Academy of Finland grant # 323960.License
Related items
Showing items with similar title or keywords.
-
Lineaariset toisen asteen hyperboliset osittaisdifferentiaaliyhtälöt
Kauppinen, Matti (2022)Tässä työssä tutkitaan toisen asteen lineaarisia hyperbolisia osittaisdifferentiaaliyhtälöitä. Toisen asteen lineaariset hyperboliset osittaisdifferentiaaliyhtälöt ovat luonnollinen yleistys aaltoyhtälölle $$u_{tt} + \Delta ... -
Traces of weighted function spaces : Dyadic norms and Whitney extensions
Koskela, Pekka; Soto, Tomás; Wang, Zhuang (Springer, 2017)The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950’s. In ... -
Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy-Sobolev -type Inequalities
Dyda, Bartłomiej; Ihnatsyeva, Lizaveta; Lehrbäck, Juha; Tuominen, Heli; Vähäkangas, Antti (Springer, 2019) -
Poincaré Type Inequalities for Vector Functions with Zero Mean Normal Traces on the Boundary and Applications to Interpolation Methods
Repin, Sergey (Springer, 2019)We consider inequalities of the Poincaré–Steklov type for subspaces of H1 -functions defined in a bounded domain Ω∈Rd with Lipschitz boundary ∂Ω . For scalar valued functions, the subspaces are defined by zero mean ... -
Existence and uniqueness of ρ(x)-harmonic functions for bounded and unbounded ρ(x)
Keisala, Jukka (University of Jyväskylä, 2011)