Traces of weighted function spaces : Dyadic norms and Whitney extensions
Koskela, P., Soto, T., & Wang, Z. (2017). Traces of weighted function spaces : Dyadic norms and Whitney extensions. Science China Mathematics, 60(11), 1981-2010. https://doi.org/10.1007/s11425-017-9148-6
Julkaistu sarjassa
Science China MathematicsPäivämäärä
2017Tekijänoikeudet
© Science China Press and Springer-Verlag Berlin Heidelberg 2017.
The trace spaces of Sobolev spaces and related fractional smoothness spaces have been an active area of research since the work of Nikolskii, Aronszajn, Slobodetskii, Babich and Gagliardo among others in the 1950’s. In this paper, we review the literature concerning such results for a variety of weighted smoothness spaces. For this purpose, we present a characterization of the trace spaces (of fractional order of smoothness), based on integral averages on dyadic cubes, which is well-adapted to extending functions using the Whitney extension operator.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
1674-7283Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27251319
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SALisätietoja rahoituksesta
This work was supported by the Academy of Finland via the Centre of Excellence in Analysis and Dynamics Research (Grant No. 307333).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On Limits at Infinity of Weighted Sobolev Functions
Eriksson-Bique, Sylvester; Koskela, Pekka; Nguyen, Khanh (Elsevier, 2022)We study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable ... -
Optimal recovery of a radiating source with multiple frequencies along one line
Brander, Tommi; Ilmavirta, Joonas; Piiroinen, Petteri; Tyni, Teemu (American Institute of Mathematical Sciences (AIMS), 2020)We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam ... -
Strong BV-extension and W1,1-extension domains
García-Bravo, Miguel; Rajala, Tapio (Elsevier, 2022)We show that a bounded domain in a Euclidean space is a W1,1-extension domain if and only if it is a strong BV-extension domain. In the planar case, bounded and strong BV-extension domains are shown to be exactly those ... -
Loomis-Whitney inequalities in Heisenberg groups
Fässler, Katrin; Pinamonti, Andrea (Springer Science and Business Media LLC, 2022)This note concerns Loomis–Whitney inequalities in Heisenberg groups Hn: |K|≲∏j=12n|πj(K)|n+1n(2n+1), K⊂Hn. Here πj, j=1,…,2n, are the vertical Heisenberg projections to the hyperplanes {xj=0}, respectively, and |⋅| refers ... -
Whitney forms and their extensions
Lohi, Jonni; Kettunen, Lauri (Elsevier, 2021)Whitney forms are widely known as finite elements for differential forms. Whitney’s original definition yields first order functions on simplicial complexes, and a lot of research has been devoted to extending the definition ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.