Näytä suppeat kuvailutiedot

dc.contributor.authorEriksson-Bique, Sylvester
dc.contributor.authorKoskela, Pekka
dc.contributor.authorNguyen, Khanh
dc.date.accessioned2022-08-25T09:42:30Z
dc.date.available2022-08-25T09:42:30Z
dc.date.issued2022
dc.identifier.citationEriksson-Bique, S., Koskela, P., & Nguyen, K. (2022). On Limits at Infinity of Weighted Sobolev Functions. <i>Journal of Functional Analysis</i>, <i>283</i>(10), Article 109672. <a href="https://doi.org/10.1016/j.jfa.2022.109672" target="_blank">https://doi.org/10.1016/j.jfa.2022.109672</a>
dc.identifier.otherCONVID_151576931
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82817
dc.description.abstractWe study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable gradient |∇u|∈Lp(Rd,w) where 1≤p<∞ and 2≤d<∞. The question is shown to subtly depend on the sense in which the limit is taken. First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of Fefferman and Uspenskiĭ. As applications to partial differential equations, we give results on the limiting behavior of weighted q-Harmonic functions at infinity (1<q><∞), which depend on the integrability degree of its gradient. </q>en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Functional Analysis
dc.rightsCC BY 4.0
dc.subject.otherSobolev functions
dc.subject.otherMuckenhoupt
dc.subject.otherlimit
dc.subject.otherasymptotic
dc.titleOn Limits at Infinity of Weighted Sobolev Functions
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202208254350
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineAnalyysin ja dynamiikan tutkimuksen huippuyksikköfi
dc.contributor.oppiaineMathematicsen
dc.contributor.oppiaineAnalysis and Dynamics Research (Centre of Excellence)en
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0022-1236
dc.relation.numberinseries10
dc.relation.volume283
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Author(s). Published by Elsevier Inc.
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber323960
dc.subject.ysodifferentiaaliyhtälöt
dc.subject.ysomatematiikka
dc.subject.ysofunktiot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p3552
jyx.subject.urihttp://www.yso.fi/onto/yso/p3160
jyx.subject.urihttp://www.yso.fi/onto/yso/p7097
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.jfa.2022.109672
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe first author was supported by the Academy of Finland grant # 345005. The second author and third author were supported by the Academy of Finland grant # 323960.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0