dc.contributor.author | Eriksson-Bique, Sylvester | |
dc.contributor.author | Koskela, Pekka | |
dc.contributor.author | Nguyen, Khanh | |
dc.date.accessioned | 2022-08-25T09:42:30Z | |
dc.date.available | 2022-08-25T09:42:30Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Eriksson-Bique, S., Koskela, P., & Nguyen, K. (2022). On Limits at Infinity of Weighted Sobolev Functions. <i>Journal of Functional Analysis</i>, <i>283</i>(10), Article 109672. <a href="https://doi.org/10.1016/j.jfa.2022.109672" target="_blank">https://doi.org/10.1016/j.jfa.2022.109672</a> | |
dc.identifier.other | CONVID_151576931 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82817 | |
dc.description.abstract | We study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable gradient |∇u|∈Lp(Rd,w) where 1≤p<∞ and 2≤d<∞. The question is shown to subtly depend on the sense in which the limit is taken.
First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of Fefferman and Uspenskiĭ.
As applications to partial differential equations, we give results on the limiting behavior of weighted q-Harmonic functions at infinity (1<q><∞), which depend on the integrability degree of its gradient.
</q> | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Journal of Functional Analysis | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Sobolev functions | |
dc.subject.other | Muckenhoupt | |
dc.subject.other | limit | |
dc.subject.other | asymptotic | |
dc.title | On Limits at Infinity of Weighted Sobolev Functions | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202208254350 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Analyysin ja dynamiikan tutkimuksen huippuyksikkö | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.contributor.oppiaine | Analysis and Dynamics Research (Centre of Excellence) | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0022-1236 | |
dc.relation.numberinseries | 10 | |
dc.relation.volume | 283 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 The Author(s). Published by Elsevier Inc. | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | 323960 | |
dc.subject.yso | differentiaaliyhtälöt | |
dc.subject.yso | matematiikka | |
dc.subject.yso | funktiot | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3552 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3160 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7097 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.jfa.2022.109672 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | The first author was supported by the Academy of Finland grant # 345005. The second author and third author were supported by the Academy of Finland grant # 323960. | |
dc.type.okm | A1 | |