Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy-Sobolev -type Inequalities
Dyda, B., Ihnatsyeva, L., Lehrbäck, J., Tuominen, H., & Vähäkangas, A. (2019). Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy-Sobolev -type Inequalities. Potential Analysis, 50(1), 83-105. https://doi.org/10.1007/s11118-017-9674-2
Julkaistu sarjassa
Potential AnalysisTekijät
Päivämäärä
2019Tekijänoikeudet
© 2018 Springer
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0926-2601Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27815934
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Assouad Type Dimensions in Geometric Analysis
Lehrbäck, Juha (Birkhäuser, 2021)We consider applications of the dual pair of the (upper) Assouad dimension and the lower (Assouad) dimension in analysis. We relate these notions to other dimensional conditions such as a Hausdorff content density condition ... -
On Limits at Infinity of Weighted Sobolev Functions
Eriksson-Bique, Sylvester; Koskela, Pekka; Nguyen, Khanh (Elsevier, 2022)We study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable ... -
Assouad Dimension, Nagata Dimension, and Uniformly Close Metric Tangents
Le Donne, Enrico; Rajala, Tapio (Indiana University, 2015)We study the Assouad dimension and the Nagata dimension of metric spaces. As a general result, we prove that the Nagata dimension of a metric space is always bounded from above by the Assouad dimension. Most of the paper ... -
Hardy inequalities and Assouad dimensions
Lehrbäck, Juha (Hebrew University Magnes Press; Springer, 2017)We establish both sufficient and necessary conditions for weighted Hardy inequalities in metric spaces in terms of Assouad (co)dimensions. Our sufficient conditions in the case where the complement is thin are new, even ... -
Weakly porous sets and Muckenhoupt Ap distance functions
Anderson, Theresa C.; Lehrbäck, Juha; Mudarra, Carlos; Vähäkangas, Antti V. (Elsevier, 2024)We examine the class of weakly porous sets in Euclidean spaces. As our first main result we show that the distance weight w(x)=dist(x,E)−α belongs to the Muckenhoupt class A1, for some α>0, if and only if E⊂Rn is weakly ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.