dc.contributor.author | Ghiyasi, Ramin | |
dc.contributor.author | Philip, Anish | |
dc.contributor.author | Liu, Ji | |
dc.contributor.author | Julin, Jaakko | |
dc.contributor.author | Sajavaara, Timo | |
dc.contributor.author | Nolan, Michael | |
dc.contributor.author | Karppinen, Maarit | |
dc.date.accessioned | 2022-05-25T12:29:12Z | |
dc.date.available | 2022-05-25T12:29:12Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Ghiyasi, R., Philip, A., Liu, J., Julin, J., Sajavaara, T., Nolan, M., & Karppinen, M. (2022). Atomic Layer Deposition of Intermetallic Fe4Zn9 Thin Films from Diethyl Zinc. <i>Chemistry of Materials</i>, <i>34</i>(11), 5241-5248. <a href="https://doi.org/10.1021/acs.chemmater.2c00907" target="_blank">https://doi.org/10.1021/acs.chemmater.2c00907</a> | |
dc.identifier.other | CONVID_144394789 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/81290 | |
dc.description.abstract | We present a new type of atomic layer deposition (ALD) process for intermetallic thin films, where diethyl zinc (DEZ) serves as a coreactant. In our proof-of-concept study, FeCl3 is used as the second precursor. The FeCl3 + DEZ process yields in situ crystalline Fe4Zn9 thin films, where the elemental purity and Fe/Zn ratio are confirmed by time-of-flight elastic recoil detection analysis (TOF-ERDA), Rutherford backscattering spectrometry (RBS), atomic absorption spectroscopy (AAS), and energy-dispersive X-ray spectroscopy (EDX) analyses. The film thickness is precisely controlled by the number of precursor supply cycles, as expected for an ALD process. The reaction mechanism is addressed by computational density functional theory (DFT) modeling. We moreover carry out preliminary tests with CuCl2 and Ni(thd)2 in combination with DEZ to confirm that these processes yield Cu–Zn and Ni–Zn thin films with DEZ as well. Thus, we envision an opening of a new ALD approach based on DEZ for intermetallic/metal alloy thin films. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | Chemistry of Materials | |
dc.rights | CC BY 4.0 | |
dc.subject.other | atomic layer deposition | |
dc.subject.other | deposition | |
dc.subject.other | energy | |
dc.subject.other | precursors | |
dc.subject.other | thin films | |
dc.title | Atomic Layer Deposition of Intermetallic Fe4Zn9 Thin Films from Diethyl Zinc | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202205252914 | |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.oppiaine | Fysiikka | fi |
dc.contributor.oppiaine | Physics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 5241-5248 | |
dc.relation.issn | 0897-4756 | |
dc.relation.numberinseries | 11 | |
dc.relation.volume | 34 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © The Authors. Published by American Chemical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | ohutkalvot | |
dc.subject.yso | atomikerroskasvatus | |
dc.subject.yso | fysiikka | |
dc.subject.yso | kalvot (tekniikka) | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16644 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27468 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p900 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p22892 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acs.chemmater.2c00907 | |
jyx.fundinginformation | This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement (Grant No. 765378) and the Academy of Finland (Flagship PREIN). A.P. gratefully acknowledges the PoDoCo funding by the Finnish Foundation for Technology Promotion. J.L. and M.N. acknowledge funding support from the Science Foundation Ireland through the SFI-NSF China Partnership, Grant No. 17/NSFC/5279. The authors also gratefully acknowledge the use of the RawMatters Finland Infrastructure (RAMI) at Aalto University and support and computational resources from the Irish Centre for High-End Computing (ICHEC) and the SFI funded Tyndall computing resources. | |
dc.type.okm | A1 | |