Näytä suppeat kuvailutiedot

dc.contributor.authorCox, Sonja
dc.contributor.authorGeiss, Stefan
dc.date.accessioned2021-03-23T08:37:43Z
dc.date.available2021-03-23T08:37:43Z
dc.date.issued2021
dc.identifier.citationCox, S., & Geiss, S. (2021). On Decoupling in Banach Spaces. <i>Journal of Theoretical Probability</i>, <i>34</i>(3), 1179-1212. <a href="https://doi.org/10.1007/s10959-021-01085-6" target="_blank">https://doi.org/10.1007/s10959-021-01085-6</a>
dc.identifier.otherCONVID_52069690
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/74725
dc.description.abstractWe consider decoupling inequalities for random variables taking values in a Banach space X. We restrict the class of distributions that appear as conditional distributions while decoupling and show that each adapted process can be approximated by a Haar-type expansion in which only the pre-specified conditional distributions appear. Moreover, we show that in our framework a progressive enlargement of the underlying filtration does not affect the decoupling properties (in particular, it does not affect the constants involved). As a special case, we deal with one-sided moment inequalities for decoupled dyadic (i.e., Paley–Walsh) martingales and show that Burkholder–Davis–Gundy-type inequalities for stochastic integrals of X-valued processes can be obtained from decoupling inequalities for X-valued dyadic martingales.en
dc.format.mimetypeapplication/pdf
dc.languageeng
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofseriesJournal of Theoretical Probability
dc.rightsCC BY 4.0
dc.subject.otherdecoupling in Banach spaces
dc.subject.otherregular conditional probabilities
dc.subject.otherdyadic martingales
dc.subject.otherstochastic integration
dc.titleOn Decoupling in Banach Spaces
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202103232061
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1179-1212
dc.relation.issn0894-9840
dc.relation.numberinseries3
dc.relation.volume34
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2021
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber298641
dc.subject.ysoBanachin avaruudet
dc.subject.ysostokastiset prosessit
dc.subject.ysofunktionaalianalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38972
jyx.subject.urihttp://www.yso.fi/onto/yso/p11400
jyx.subject.urihttp://www.yso.fi/onto/yso/p17780
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10959-021-01085-6
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundinginformationThe first author is supported by the research program VENI Vernieuwingsimpuls with Project Number 639.031.549, which is financed by the Netherlands Organization for Scientific Research (NWO). The second author is supported by the project Stochastic Analysis and Nonlinear Partial Differential Equations, Interactions and Applications of the Academy of Finland with Project Number 298641. The authors wish to thank Mark Veraar, Peter Spreij, and an anonymous referee. The first author would also like to thank Lotte Meijer. Open access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0