Uniform measure density condition and game regularity for tug-of-war games
Heino, J. (2018). Uniform measure density condition and game regularity for tug-of-war games. Bernoulli, 24(1), 408-432. https://doi.org/10.3150/16-BEJ882
Julkaistu sarjassa
BernoulliTekijät
Päivämäärä
2018Tekijänoikeudet
© 2018 ISI/BS
We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for the associated stopping times and density estimates for the sum of independent and identically distributed random vectors.
Julkaisija
International Statistical Institute; Bernoulli Society for Mathematical Statistics and ProbabilityISSN Hae Julkaisufoorumista
1350-7265Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27171030
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
On the local and global regularity of tug-of-war games
Heino, Joonas (University of Jyväskylä, 2018)This thesis studies local and global regularity properties of a stochastic two-player zero-sum game called tug-of-war. In particular, we study value functions of the game locally as well as globally, that is, close to ... -
Asymptotic C1,γ-regularity for value functions to uniformly elliptic dynamic programming principles
Blanc, Pablo; Parviainen, Mikko; Rossi, Julio D. (Springer, 2022)In this paper we prove an asymptotic C1,γ-estimate for value functions of stochastic processes related to uniformly elliptic dynamic programming principles. As an application, this allows us to pass to the limit with a ... -
Gradient and Lipschitz Estimates for Tug-of-War Type Games
Attouchi, Amal; Luiro, Hannes; Parviainen, Mikko (Society for Industrial and Applied Mathematics, 2021)We define a random step size tug-of-war game and show that the gradient of a value function exists almost everywhere. We also prove that the gradients of value functions are uniformly bounded and converge weakly to the ... -
Asymptotic Hölder regularity for the ellipsoid process
Arroyo, Ángel; Parviainen, Mikko (EDP Sciences, 2020)We obtain an asymptotic Hölder estimate for functions satisfying a dynamic programming principle arising from a so-called ellipsoid process. By the ellipsoid process we mean a generalization of the random walk where the ... -
Hölder regularity for stochastic processes with bounded and measurable increments
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko (European Mathematical Society - EMS - Publishing House GmbH, 2023)We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.