On Decoupling in Banach Spaces
Cox, S., & Geiss, S. (2021). On Decoupling in Banach Spaces. Journal of Theoretical Probability, 34(3), 1179-1212. https://doi.org/10.1007/s10959-021-01085-6
Julkaistu sarjassa
Journal of Theoretical ProbabilityPäivämäärä
2021Tekijänoikeudet
© The Author(s) 2021
We consider decoupling inequalities for random variables taking values in a Banach space X. We restrict the class of distributions that appear as conditional distributions while decoupling and show that each adapted process can be approximated by a Haar-type expansion in which only the pre-specified conditional distributions appear. Moreover, we show that in our framework a progressive enlargement of the underlying filtration does not affect the decoupling properties (in particular, it does not affect the constants involved). As a special case, we deal with one-sided moment inequalities for decoupled dyadic (i.e., Paley–Walsh) martingales and show that Burkholder–Davis–Gundy-type inequalities for stochastic integrals of X-valued processes can be obtained from decoupling inequalities for X-valued dyadic martingales.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0894-9840Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/52069690
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The first author is supported by the research program VENI Vernieuwingsimpuls with Project Number 639.031.549, which is financed by the Netherlands Organization for Scientific Research (NWO). The second author is supported by the project Stochastic Analysis and Nonlinear Partial Differential Equations, Interactions and Applications of the Academy of Finland with Project Number 298641. The authors wish to thank Mark Veraar, Peter Spreij, and an anonymous referee. The first author would also like to thank Lotte Meijer. Open access funding provided by University of Jyväskylä (JYU). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs
Geiss, Stefan; Ylinen, Juha (American Mathematical Society, 2021)We introduce a decoupling method on the Wiener space to define a wide class of anisotropic Besov spaces. The decoupling method is based on a general distributional approach and not restricted to the Wiener space. The class ... -
Conditional convex orders and measurable martingale couplings
Leskelä, Lasse; Vihola, Matti (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2017)Strassen’s classical martingale coupling theorem states that two random vectors are ordered in the convex (resp. increasing convex) stochastic order if and only if they admit a martingale (resp. submartingale) coupling. By ... -
Uniform measure density condition and game regularity for tug-of-war games
Heino, Joonas (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2018)We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for ... -
Markov chain backward stochastic differential equations in modeling insurance policy
Hänninen, Henri (2022)Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen ... -
On the uniqueness of a solution and stability of McKean-Vlasov stochastic differential equations
Nykänen, Jani (2020)Tässä tutkielmassa tutustutaan McKeanin-Vlasovin stokastisiin differentiaaliyhtälöihin, jotka yleistävät tavalliset stokastiset differentiaaliyhtälöt lisäämällä kerroinfunktioihin riippuvuuden tuntemattoman prosessin ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.