Conditional convex orders and measurable martingale couplings
Leskelä, L., & Vihola, M. (2017). Conditional convex orders and measurable martingale couplings. Bernoulli, 23(4A), 2784-2807. https://doi.org/10.3150/16-BEJ827
Published in
BernoulliDate
2017Copyright
© 2017 ISI/BS. Published in this repository with the kind permission of the publisher.
Strassen’s classical martingale coupling theorem states that two random vectors are ordered in the convex
(resp. increasing convex) stochastic order if and only if they admit a martingale (resp. submartingale) coupling.
By analysing topological properties of spaces of probability measures equipped with a Wasserstein
metric and applying a measurable selection theorem, we prove a conditional version of this result for random
vectors conditioned on a random element taking values in a general measurable space. We provide an
analogue of the conditional martingale coupling theorem in the language of probability kernels, and discuss
how it can be applied in the analysis of pseudo-marginal Markov chain Monte Carlo algorithms. We also illustrate
how our results imply the existence of a measurable minimiser in the context of martingale optimal
transport.
Publisher
International Statistical Institute; Bernoulli Society for Mathematical Statistics and ProbabilityISSN Search the Publication Forum
1350-7265Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/26998490
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Academy Research Fellow, AoF
Related items
Showing items with similar title or keywords.
-
On Decoupling in Banach Spaces
Cox, Sonja; Geiss, Stefan (Springer, 2021)We consider decoupling inequalities for random variables taking values in a Banach space X. We restrict the class of distributions that appear as conditional distributions while decoupling and show that each adapted process ... -
On the uniqueness of a solution and stability of McKean-Vlasov stochastic differential equations
Nykänen, Jani (2020)Tässä tutkielmassa tutustutaan McKeanin-Vlasovin stokastisiin differentiaaliyhtälöihin, jotka yleistävät tavalliset stokastiset differentiaaliyhtälöt lisäämällä kerroinfunktioihin riippuvuuden tuntemattoman prosessin ... -
Markov chain backward stochastic differential equations in modeling insurance policy
Hänninen, Henri (2022)Tässä tutkielmassa tarkastelemme henkivakuutuksen varantoa. Mallinnamme henkivakuutusta Markovin prosessin avulla, ja varannon määrittelyyn ja mallintamiseen käytämme Markovin ketju BSDE:itä (Markovin ketju takaperoinen ... -
Uniform measure density condition and game regularity for tug-of-war games
Heino, Joonas (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2018)We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for ... -
Hölder regularity for stochastic processes with bounded and measurable increments
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko (European Mathematical Society - EMS - Publishing House GmbH, 2023)We obtain an asymptotic Hölder estimate for expectations of a quite general class of discrete stochastic processes. Such expectations can also be described as solutions to a dynamic programming principle or as solutions ...