Trace and Density Results on Regular Trees
Koskela, P., Nguyen, K. N., & Wang, Z. (2022). Trace and Density Results on Regular Trees. Potential Analysis, 57(1), 101-128. https://doi.org/10.1007/s11118-021-09907-2
Julkaistu sarjassa
Potential AnalysisPäivämäärä
2022Oppiaine
Analyysin ja dynamiikan tutkimuksen huippuyksikköMatematiikkaAnalysis and Dynamics Research (Centre of Excellence)MathematicsTekijänoikeudet
© The Author(s) 2021
The boundary of a regular tree can be viewed as a Cantor-type set. We equip our tree with a weighted distance and a weighted measure via the Euclidean arc-length and consider the associated first-order Sobolev spaces. We give characterizations for the existence of traces and for the density of compactly supported functions.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0926-2601Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/51870421
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open access funding provided by University of Jyväskylä (JYU).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Trace Operators on Regular Trees
Koskela, Pekka; Nguyen, Khanh Ngoc; Wang, Zhuang (De Gruyter, 2021)We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace. -
A density result on Orlicz-Sobolev spaces in the plane
Ortiz, Walter A.; Rajala, Tapio (Elsevier, 2021)We show the density of smooth Sobolev functions Wk,∞(Ω)∩C∞(Ω) in the Orlicz-Sobolev spaces Lk,Ψ(Ω) for bounded simply connected planar domains Ω and doubling Young functions Ψ. -
Admissibility versus Ap-Conditions on Regular Trees
Nguyen, Khanh Ngoc; Wang, Zhuang (De Gruyter, 2020)We show that the combination of doubling and (1, p)-Poincaré inequality is equivalent to a version of the Ap-condition on rooted K-ary trees. -
Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
Koskela, Pekka; Wang, Zhuang (Springer, 2020)In this paper, we study function spaces defined via dyadic energies on the boundaries of regular trees. We show that correct choices of dyadic energies result in Besov-type spaces that are trace spaces of (weighted) first ... -
The volume of the boundary of a Sobolev (p,q)-extension domain
Koskela, Pekka; Ukhlov, Alexander; Zhu, Zheng (Elsevier, 2022)Let n≥2 and $1\leq q<p><\fz$. We prove that if Ω⊂Rn is a Sobolev (p,q)-extension domain, with additional capacitory restrictions on boundary in the case q≤n−1, n>2, then |∂Ω|=0. In the case 1≤q0.</p>
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.