A density result on Orlicz-Sobolev spaces in the plane
Ortiz, W. A., & Rajala, T. (2021). A density result on Orlicz-Sobolev spaces in the plane. Journal of Mathematical Analysis and Applications, 503(2), Article 125329. https://doi.org/10.1016/j.jmaa.2021.125329
Julkaistu sarjassa
Journal of Mathematical Analysis and ApplicationsPäivämäärä
2021Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© 2021 The Author(s). Published by Elsevier Inc.
We show the density of smooth Sobolev functions Wk,∞(Ω)∩C∞(Ω) in the Orlicz-Sobolev spaces Lk,Ψ(Ω) for bounded simply connected planar domains Ω and doubling Young functions Ψ.
Julkaisija
ElsevierISSN Hae Julkaisufoorumista
0022-247XJulkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/83402090
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SA; Akatemiatutkija, SALisätietoja rahoituksesta
TR acknowledges the support by the Academy of Finland, projects no. 274372 and 314789. WO acknowledges the support by MINECO Grants MTM201344304P and EEBBI1812876 (Spain).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
A Density Result for Homogeneous Sobolev Spaces on Planar Domains
Nandi, Debanjan; Rajala, Tapio; Schultz, Timo (Springer Netherlands, 2019)We show that in a bounded simply connected planar domain Ω the smooth Sobolev functions Wk,∞(Ω) ∩ C∞(Ω) are dense in the homogeneous Sobolev spaces Lk,p(Ω). -
Trace and Density Results on Regular Trees
Koskela, Pekka; Nguyen, Khanh Ngoc; Wang, Zhuang (Springer, 2022)The boundary of a regular tree can be viewed as a Cantor-type set. We equip our tree with a weighted distance and a weighted measure via the Euclidean arc-length and consider the associated first-order Sobolev spaces. We ... -
Planar Sobolev extension domains
Zhang, Yi (University of Jyväskylä, 2017)This doctoral thesis deals with geometric characterizations of bounded planar simply connected Sobolev extension domains. It consists of three papers. In the first and third papers we give full geometric characterizations ... -
Sobolev homeomorphic extensions onto John domains
Koskela, Pekka; Koski, Aleksis; Onninen, Jani (Elsevier Inc., 2020)Given the planar unit disk as the source and a Jordan domain as the target, we study the problem of extending a given boundary homeomorphism as a Sobolev homeomorphism. For general targets, this Sobolev variant of the ... -
Sobolev homeomorphic extensions
Koski, Aleksis; Onninen, Jani (European Mathematical Society, 2021)Let X and Y be ℓ-connected Jordan domains, ℓ∈N, with rectifiable boundaries in the complex plane. We prove that any boundary homeomorphism φ:∂X→∂Y admits a Sobolev homeomorphic extension h:X¯→Y¯ in W1,1(X,C). If instead X ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.