Admissibility versus Ap-Conditions on Regular Trees
Nguyen, K. N., & Wang, Z. (2020). Admissibility versus Ap-Conditions on Regular Trees. Analysis and Geometry in Metric Spaces, 8(1), 92-105. https://doi.org/10.1515/agms-2020-0110
Published in
Analysis and Geometry in Metric SpacesDate
2020Copyright
© 2020 Khanh Ngoc Nguyen and Zhuang Wang, published by De Gruyter.
We show that the combination of doubling and (1, p)-Poincaré inequality is equivalent to a version of the Ap-condition on rooted K-ary trees.
Publisher
De GruyterISSN Search the Publication Forum
2299-3274Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/41817931
Metadata
Show full item recordCollections
Related funder(s)
Academy of FinlandFunding program(s)
Centre of Excellence, AoF
Additional information about funding
Authors have been supported by the Academy of Finland via Centre of Excellence in Analysis and Dynamics Research (project No. 307333).License
Related items
Showing items with similar title or keywords.
-
Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
Koskela, Pekka; Wang, Zhuang (Springer, 2020)In this paper, we study function spaces defined via dyadic energies on the boundaries of regular trees. We show that correct choices of dyadic energies result in Besov-type spaces that are trace spaces of (weighted) first ... -
Trace Operators on Regular Trees
Koskela, Pekka; Nguyen, Khanh Ngoc; Wang, Zhuang (De Gruyter, 2021)We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace. -
On a class of singular measures satisfying a strong annular decay condition
Arroyo, Ángel; Llorente, José G. (American Mathematical Society, 2019)A metric measure space (X, d, t) is said to satisfy the strong annular decay condition if there is a constant C > 0 such that for each x E X and all 0 < r < R. If do., is the distance induced by the co -norm in RN, we ... -
Uniform measure density condition and game regularity for tug-of-war games
Heino, Joonas (International Statistical Institute; Bernoulli Society for Mathematical Statistics and Probability, 2018)We show that a uniform measure density condition implies game regularity for all 2 < p < ∞ in a stochastic game called “tug-of-war with noise”. The proof utilizes suitable choices of strategies combined with estimates for ... -
Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Elsevier, 2020)We study (p-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive ...