Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
Koskela, P., & Wang, Z. (2020). Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees. Potential Analysis, 53(4), 1317-1346. https://doi.org/10.1007/s11118-019-09808-5
Julkaistu sarjassa
Potential AnalysisPäivämäärä
2020Tekijänoikeudet
© The Author(s) 2019
In this paper, we study function spaces defined via dyadic energies on the boundaries of regular trees. We show that correct choices of dyadic energies result in Besov-type spaces that are trace spaces of (weighted) first order Sobolev spaces.
Julkaisija
SpringerISSN Hae Julkaisufoorumista
0926-2601Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/33576199
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SALisätietoja rahoituksesta
Authors have been supported by the Academy of Finland via Centre of Excellence in Analysis and Dynamics Research (project No. 307333).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Admissibility versus Ap-Conditions on Regular Trees
Nguyen, Khanh Ngoc; Wang, Zhuang (De Gruyter, 2020)We show that the combination of doubling and (1, p)-Poincaré inequality is equivalent to a version of the Ap-condition on rooted K-ary trees. -
Trace Operators on Regular Trees
Koskela, Pekka; Nguyen, Khanh Ngoc; Wang, Zhuang (De Gruyter, 2021)We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace. -
The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, Panu (Elsevier Masson, 2019)In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the ... -
A note on the capacity estimate in metastability for generic configurations
Avelin, Benny; Julin, Vesa (Springer, 2024)In this paper we further develop the ideas from Geometric Function Theory initially introduced in Avelin et al. (Commun Math Phys 404:401–437, 2023), to derive capacity estimate in metastability for arbitrary configurations. ... -
A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, Panu (Suomalainen tiedeakatemia, 2018)In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p = 1. Then we use this property to prove the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.