Trace Operators on Regular Trees
Koskela, P., Nguyen, K. N., & Wang, Z. (2021). Trace Operators on Regular Trees. Analysis and Geometry in Metric Spaces, 8(1), 396-409. https://doi.org/10.1515/agms-2020-0117
Julkaistu sarjassa
Analysis and Geometry in Metric SpacesPäivämäärä
2021Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© 2020 the Authors
We consider different notions of boundary traces for functions in Sobolev spaces defined on regular trees and show that the almost everywhere existence of these traces is independent of the chosen definition of a trace.
Julkaisija
De GruyterISSN Hae Julkaisufoorumista
2299-3274Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/47835910
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Trace and Density Results on Regular Trees
Koskela, Pekka; Nguyen, Khanh Ngoc; Wang, Zhuang (Springer, 2022)The boundary of a regular tree can be viewed as a Cantor-type set. We equip our tree with a weighted distance and a weighted measure via the Euclidean arc-length and consider the associated first-order Sobolev spaces. We ... -
Admissibility versus Ap-Conditions on Regular Trees
Nguyen, Khanh Ngoc; Wang, Zhuang (De Gruyter, 2020)We show that the combination of doubling and (1, p)-Poincaré inequality is equivalent to a version of the Ap-condition on rooted K-ary trees. -
Dyadic Norm Besov-Type Spaces as Trace Spaces on Regular Trees
Koskela, Pekka; Wang, Zhuang (Springer, 2020)In this paper, we study function spaces defined via dyadic energies on the boundaries of regular trees. We show that correct choices of dyadic energies result in Besov-type spaces that are trace spaces of (weighted) first ... -
Tensorization of quasi-Hilbertian Sobolev spaces
Eriksson-Bique, Sylvester; Rajala, Tapio; Soultanis, Elefterios (EMS Press, 2024)The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space X Y can be determined from its factors. We show that two natural descriptions of the Sobolev ... -
A maximal Function Approach to Two-Measure Poincaré Inequalities
Kinnunen, Juha; Korte, Riikka; Lehrbäck, Juha; Vähäkangas, Antti (Springer New York, 2019)This paper extends the self-improvement result of Keith and Zhong in Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincaré inequality for ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.