dc.contributor.author | Kinnunen, Juha | |
dc.contributor.author | Korte, Riikka | |
dc.contributor.author | Lehrbäck, Juha | |
dc.contributor.author | Vähäkangas, Antti | |
dc.date.accessioned | 2019-06-28T07:02:34Z | |
dc.date.available | 2020-05-03T21:35:14Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Kinnunen, J., Korte, R., Lehrbäck, J., & Vähäkangas, A. (2019). A maximal Function Approach to Two-Measure Poincaré Inequalities. <i>Journal of Geometric Analysis</i>, <i>29</i>(2), 1763-1810. <a href="https://doi.org/10.1007/s12220-018-0061-z" target="_blank">https://doi.org/10.1007/s12220-018-0061-z</a> | |
dc.identifier.other | CONVID_28209284 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/64910 | |
dc.description.abstract | This paper extends the self-improvement result of Keith and Zhong in Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincaré inequality for 1<p<∞ improves to a (p,p−ε) -Poincaré inequality for some ε>0 under a balance condition on the measures. The corresponding result for a maximal Poincaré inequality is also considered. In this case the left-hand side in the Poincaré inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincaré inequalities is used to characterize the self-improvement of two-measure Poincaré inequalities. Examples are constructed to illustrate the role of the assumptions. Harmonic analysis and PDE techniques are used extensively in the arguments. | fi |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Springer New York | |
dc.relation.ispartofseries | Journal of Geometric Analysis | |
dc.rights | In Copyright | |
dc.subject.other | geodesic two-measure space | |
dc.subject.other | Poincaré inequality | |
dc.subject.other | self-improvement | |
dc.title | A maximal Function Approach to Two-Measure Poincaré Inequalities | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-201906253435 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.date.updated | 2019-06-25T12:15:20Z | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 1763-1810 | |
dc.relation.issn | 1050-6926 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 29 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © Mathematica Josephina, Inc. 2018 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | potentiaaliteoria | |
dc.subject.yso | funktionaalianalyysi | |
dc.subject.yso | epäyhtälöt | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18911 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p17780 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15720 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.1007/s12220-018-0061-z | |
dc.type.okm | A1 | |