Maximal function estimates and self-improvement results for Poincaré inequalities
Kinnunen, J., Lehrbäck, J., Vähäkangas, A., & Zhong, X. (2019). Maximal function estimates and self-improvement results for Poincaré inequalities. Manuscripta Mathematica, 158(1-2), 119-147. https://doi.org/10.1007/s00229-018-1016-1
Julkaistu sarjassa
Manuscripta MathematicaPäivämäärä
2019Tekijänoikeudet
© Springer-Verlag GmbH Germany, part of Springer Nature 2018
Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces.
Julkaisija
Springer Berlin HeidelbergISSN Hae Julkaisufoorumista
0025-2611Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/27995120
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Hajłasz Capacity Density Condition is Self-improving
Canto, Javier; Vähäkangas, Antti V. (Springer Science and Business Media LLC, 2022)We prove a self-improvement property of a capacity density condition for a nonlocal Hajłasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary ... -
On the BBM-Phenomenon in Fractional Poincaré–Sobolev Inequalities with Weights
Hurri-Syrjänen, Ritva; Martínez-Perales, Javier C.; Pérez, Carlos; Vähäkangas, Antti V. (Oxford University Press (OUP), 2023)In this paper, we unify and improve some of the results of Bourgain, Brezis, and Mironescu and the weighted Poincaré–Sobolev estimate by Fabes, Kenig, and Serapioni. More precisely, we get weighted counterparts of the ... -
A maximal Function Approach to Two-Measure Poincaré Inequalities
Kinnunen, Juha; Korte, Riikka; Lehrbäck, Juha; Vähäkangas, Antti (Springer New York, 2019)This paper extends the self-improvement result of Keith and Zhong in Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincaré inequality for ... -
ε-approximability of harmonic functions in Lp implies uniform rectifiability
Bortz, Simon; Tapiola, Olli (American Mathematical Society, 2019) -
Uniform rectifiability and ε-approximability of harmonic functions in Lp
Hofmann, Steve; Tapiola, Olli (Centre Mersenne; l'Institut Fourier,, 2020)Suppose that E⊂Rn+1 is a uniformly rectifiable set of codimension 1. We show that every harmonic function is ε-approximable in Lp(Ω) for every p∈(1,∞), where Ω:=Rn+1∖E. Together with results of many authors this shows that ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.