The Hajłasz Capacity Density Condition is Self-improving
Canto, J., & Vähäkangas, A. V. (2022). The Hajłasz Capacity Density Condition is Self-improving. Journal of Geometric Analysis, 32(11), Article 276. https://doi.org/10.1007/s12220-022-00979-z
Julkaistu sarjassa
Journal of Geometric AnalysisPäivämäärä
2022Oppiaine
MatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköMathematicsAnalysis and Dynamics Research (Centre of Excellence)Tekijänoikeudet
© The Author(s) 2022
We prove a self-improvement property of a capacity density condition for a nonlocal Hajłasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary Poincaré inequalities, adapts Keith–Zhong techniques for establishing local Hardy inequalities and applies Koskela–Zhong arguments for proving self-improvement properties of local Hardy inequalities. This leads to a characterization of the Hajłasz capacity density condition in terms of a strict upper bound on the upper Assouad codimension of the underlying set, which shows the self-improvement property of the Hajłasz capacity density condition.
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
1050-6926Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/159245442
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. J.C. is supported by supported by the Ministerio de Economía y Competitividad (Spain) through Grant Nos. PID2020-113156GB-I00 and SEV-2017-0718, and by Basque Government through Grant Nos. IT-641-13 and BERC 2018-2021 and “Ayuda para la formación de personal investigador no doctor".Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Self-improvement of pointwise Hardy inequality
Eriksson-Bique, Sylvester; Vähäkangas, Antti V. (American Mathematical Society, 2019)We prove the self-improvement of a pointwise p-Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves. -
Maximal function estimates and self-improvement results for Poincaré inequalities
Kinnunen, Juha; Lehrbäck, Juha; Vähäkangas, Antti; Zhong, Xiao (Springer Berlin Heidelberg, 2019)Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, ... -
Gradient estimates for heat kernels and harmonic functions
Coulhon, Thierry; Jiang, Renjin; Koskela, Pekka; Sikora, Adam (Elsevier, 2020)Let (X,d,μ) be a doubling metric measure space endowed with a Dirichlet form E deriving from a “carré du champ”. Assume that (X,d,μ,E) supports a scale-invariant L2-Poincaré inequality. In this article, we study the following ... -
The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, Panu (Elsevier Masson, 2019)In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the ... -
A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, Panu (Suomalainen tiedeakatemia, 2018)In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p = 1. Then we use this property to prove the ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.