Self-improving properties of generalized Orlicz-Poincaré inequalities
Julkaistu sarjassa
Report / University of Jyväskylä. Department of Mathematics and StatisticsTekijät
Päivämäärä
2006Oppiaine
MatematiikkaJulkaisija
University of JyväskyläISBN
951-39-2648-6ISSN Hae Julkaisufoorumista
1457-8905Asiasanat
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Väitöskirjat [3559]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Self-improvement of weighted pointwise inequalities on open sets
Eriksson-Bique, Sylvester; Lehrbäck, Juha; Vähäkangas, Antti V. (Elsevier BV, 2020)We prove a general self-improvement property for a family of weighted pointwise inequalities on open sets, including pointwise Hardy inequalities with distance weights. For this purpose we introduce and study the classes ... -
Generalized dimension distortion under Sobolev mappings
Zapadinskaya, Aleksandra (University of Jyväskylä, 2011) -
Maximal function estimates and self-improvement results for Poincaré inequalities
Kinnunen, Juha; Lehrbäck, Juha; Vähäkangas, Antti; Zhong, Xiao (Springer Berlin Heidelberg, 2019)Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, ... -
The Hajłasz Capacity Density Condition is Self-improving
Canto, Javier; Vähäkangas, Antti V. (Springer Science and Business Media LLC, 2022)We prove a self-improvement property of a capacity density condition for a nonlocal Hajłasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary ... -
Self-improvement of pointwise Hardy inequality
Eriksson-Bique, Sylvester; Vähäkangas, Antti V. (American Mathematical Society, 2019)We prove the self-improvement of a pointwise p-Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves.
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.