Self-improvement of pointwise Hardy inequality
Eriksson-Bique, S., & Vähäkangas, A. V. (2019). Self-improvement of pointwise Hardy inequality. Transactions of the American Mathematical Society, 372(3), 2235-2250. https://doi.org/10.1090/tran/7826
Julkaistu sarjassa
Transactions of the American Mathematical SocietyPäivämäärä
2019Tekijänoikeudet
© 2019 American Mathematical Society
We prove the self-improvement of a pointwise p-Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves.
Julkaisija
American Mathematical SocietyISSN Hae Julkaisufoorumista
0002-9947Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/32154801
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The first author was partially supported by grant #DMS-1704215 of the NSF (U.S.).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
The Hajłasz Capacity Density Condition is Self-improving
Canto, Javier; Vähäkangas, Antti V. (Springer Science and Business Media LLC, 2022)We prove a self-improvement property of a capacity density condition for a nonlocal Hajłasz gradient in complete geodesic spaces with a doubling measure. The proof relates the capacity density condition with boundary ... -
Self-improvement of weighted pointwise inequalities on open sets
Eriksson-Bique, Sylvester; Lehrbäck, Juha; Vähäkangas, Antti V. (Elsevier BV, 2020)We prove a general self-improvement property for a family of weighted pointwise inequalities on open sets, including pointwise Hardy inequalities with distance weights. For this purpose we introduce and study the classes ... -
The Choquet and Kellogg properties for the fine topology when p=1 in metric spaces
Lahti, Panu (Elsevier Masson, 2019)In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincar´e inequality, we prove the fine Kellogg property, the quasi-Lindel¨of principle, and the Choquet property for the ... -
A new Cartan-type property and strict quasicoverings when P = 1 in metric spaces
Lahti, Panu (Suomalainen tiedeakatemia, 2018)In a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we prove a new Cartan-type property for the fine topology in the case p = 1. Then we use this property to prove the ... -
Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces
Björn, Anders; Björn, Jana; Lehrbäck, Juha (Elsevier, 2020)We study (p-harmonic) singular functions, defined by means of upper gradients, in bounded domains in metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain has positive ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.