Self-affine sets in analytic curves and algebraic surfaces
Feng, D.-J., & Käenmäki, A. (2018). Self-affine sets in analytic curves and algebraic surfaces. Annales Academiae Scientiarum Fennicae Mathematica, 43, 109-119. https://doi.org/10.5186/aasfm.2018.4306
Published in
Annales Academiae Scientiarum Fennicae MathematicaDate
2018Copyright
© The Authors & Academia Scientiarum Fennica, 2017.
We characterize analytic curves that contain non-trivial self-affine sets. We also prove that compact algebraic surfaces do not contain non-trivial self-affine sets.
Publisher
Suomalainen tiedeakatemiaISSN Search the Publication Forum
1239-629XPublication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/27955499
Metadata
Show full item recordCollections
License
Related items
Showing items with similar title or keywords.
-
Resonance between planar self-affine measures
Pyörälä, Aleksi (Elsevier, 2024)We show that if {ϕi}i∈Γ and {ψj}j∈Λ are self-affine iterated function systems on the plane that satisfy strong separation, domination and irreducibility, then for any associated self-affine measures µ and ν, the inequality ... -
Pääideaalialueen moduulien päälause
Lehtikangas, Vilppu (2021)Tämän tutkielman tarkoituksena on rakentaa moduulien teoria ryhmä- ja rengasteorian alkeista lähtien, sekä osoittaa pääideaalialueiden moduulien päälause. Moduuli on joukko G varustettuna yhteenlaskutoimituksella, joka ... -
The minimal number of generators for ideals in commutative rings
Pirnes, Erika (2018)Olkoon R kommutatiivinen rengas. Tämän tutkielman tarkoituksena on etsiä ylä- ja alarajat äärellisviritteisen ideaalin I = (a1, . . . , an) ⊂ R minimaaliselle virittäjämäärälle. Tärkeänä työkaluna toimii moduliteoria; ... -
Local dimensions of measures on infinitely generated self-affine sets
Rossi, Eino (Academic Press, 2014)We show the existence of the local dimension of an invariant probability measure on an infinitely generated self-affine set, for almost all translations. This implies that an ergodic probability measure is exactly dimensional. ... -
Genericity of dimension drop on self-affine sets
Käenmäki, Antti; Li, Bing (North-Holland, 2017)We prove that generically, for a self-affine set in Rd, removing one of the affine maps which defines the set results in a strict reduction of the Hausdorff dimension. This gives a partial positive answer to a folklore ...